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Abstract— This paper presents the results  the study nonlinear 

vibrations of the three-phase composite shallow cylindrical shell. The 

differential equation describing the nonlinear vibrations of the shell is 

solved by the Newmark direct integration method combined with the 

Newton Raphson iterative method. Numerical simulation by finite 

element method is used to calculate the vibration of the structure. The 

results of the digital survey allow to make quantitative comments, 

technical recommendations, help the designers and users to orient 

effective applications in technical fields. 

 

 

I. INTRODUCTION 

Three-phase composite is a material consisting of a 

matrix phase, a fiber phase and a particle phase, which has 

been studied by Vanin G.A and Duc N.D. (1996a, 

1996b)[7,8]. In the 1997 publications, Vanin G.A. and Duc 

N.D determined the elastic modulus for three-phase 

composite materials 3Dm (Vanin G.A. and Duc N.D., 

1997) and 4Dm (Duc N.D., 1997a). An overview of three-

phase composite materials was also found in the study of 

Minh D.K. (2011). Recently, Duc N.D. et al. (2011) also 

studied the nonlinear stability of three-phase polymer 

composite panels under thermal and mechanical load 

conditions (Duc N.D. et al., 2013; 2014). In this report, the 

authors studied the nonlinear dynamic response of the 

multilayer three-phase composite shallow cylindrical shell. 

The formulas are based on classical shell theory, taking 

into account geometric nonlinearities.  
 

II. MATHEMATICAL MODELS AND 

ASSUMPTIONS 

The cylindrical shell is considered as the shell with the 

ratio 0

min

f 1

l 5
  , where f0 - the curvature of the shell, lmin = 

min(a, L), a, L- the equal projection dimensions of the 

shell (Fig.2). According to the finite element method, the 

cylindrical shell can be discretized by flat elements, 

whereby the shell is a finite combination of 9 node-pointed 

flat elements, called the flat shell element, where each “flat 

shell element” can be seen as a combination of two types 

of elements: a 9 node flat element, each with 2 degrees of 

freedom (ui, vi) and a 9 node flat shell element subjected to 

combined bending - torsion, each node has 4 degrees of 

freedom (wi, xi, yi, zi), as shown in Fig.2. In the report, 

the authors use the thick-shell theory, which satisfies the 

Reissner-Mindlin theory. 

 

a, Shell model, b, Three-phase polymer composites model 

Fig. 1(a,b): The model of the problem 
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a, Finite element model of the shell   
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b, Flat element in tension (compression)and flat shell 

element in combined bending - torsion 

Fig. 2 (a,b): Finite Element Model 

 

III. DETERMINATION OF ELASTIC 

COEFFICIENTS FOR THREE-PHASE 

COMPOSITE 

For three-phase composite materials (polymer matrix, 

fiber and particle). According to [2], the elastic coefficient 

of three-phase composites Vanin G.A. determined in 2 

steps: 

The first step: Considering a two-phase composite 

consisting of the initial matrix phase and particles, such a 

composite is considered to be homogeneous, isotropic, and 

has two elastic coefficients. The determination of the 

elastic coefficients for composites filled with spherical 

particles is determined, taking into account the interaction 

between the particles and the matrix. The elastic 

coefficients of the grain-reinforced composite are now 

called hypothetical composites. 

Second step: determine the elastic coefficients of the 

composite between the assumed foundation and the 

reinforcing fibers. 

Assuming the components of the composite (matrix, 

fibers, particles) are all homogeneous, isotropic, then we 

will denote: En, Gn, νn, ψn; Es, Gs, νs, ψs; Eh, Gh, νh, ψh are 

denoted by the modulus of elasticity, modulus of elasticity 

of shear, modulus of volume deformation, Poisson's 

coefficient, and composition ratio (by volume) of the 

matrix and particles, respectively. From here on, the 

quantities related to the matrix will have the n-index; 

relative to the particle is the h-index. According to [3], the 

elastic modulus of the assumed composite as follows: 

9KG
E

3K G
=

+
;

3K 2G
v

6K 2G

−
=

−
                                        (1) 

Where:  

h n

n

h n

1 (7 5 ) H
G G

1 (8 10 ) H

− − 
=

+ − 
;

1

h n n

n 1

h n n

1 4 G L(3K )
K K

1 4 G L(3K )

−

−

+ 
=

− 
(2) 

with 

h n

h n

K K
L

K (4G 3)

−
=

+
; n h

n n n h

(G G ) 1
H

8 10 (7 5 )(G G )

−
=

−  + − 
;

i

i

i

E
G

2(1 v )
=

+
;  i=n,s,h. 

The modulus of elasticity for the three-phase 

homogeneous fiber-reinforced composite is calculated 

according to Vanin's formula [1]: 
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IV. DOMINANT EQUATION 

4.1. The relationship between strain and displacement 

When taking into account the deformation of the mean 

surface of the element, the strain vector components are 

related to the displacement field according to the 

expression:  

o N

x x x x

o N

y y y y

o N

xy xy xy xy

z ,

         
      

 =  +  +        
                

                               (3) 

Where: 
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 is the linear strain vector, 

Rx, Ry are the radius of curvature in the x and y 

directions, respectively 
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bending and torsion curvature vectors, 
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   is the nonlinear strain vector. 

4.2. Relationship between stress and strain 

' ' '

x 11 12 16 x

' ' '
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xy 16 26 66 xyk kk
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                             (4) 

Where: 
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4.3. Internal force components 

The surface force vector {N} = {Nx Ny Nxy}T, bending 

moment, torsion moment, {M} = {Mx My Mxy}T in the 

shell element with n composite layers are determined as 

follows: 

 

 

   
   

   

 
0 NA BN

B DM

     +     
=    

       
                                  (5) 

Where: 
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ij k 1 kk
k 1

A Q ' z z ,+

=

 
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2 2
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3
+

=

 
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 
  

4.4. Differential equation of vibration of a three phase 

composite shell 

After building the finite element model of the structure 

is built, the structural analysis is performed. This work 

includes: 

- Build element equations (element stiffness matrix, 

element load vector); 

- Connect elements to create the overall stiffness 

matrix; 

- Set up the general equation; 

- Solve the general equation; 

- Calculate the necessary results from the solutions of 

the general equation. 

The nonlinear differential equation which describes the 

vibration of the shell: 

       g g gM q C q q FK+ = +                                 (6) 

Where: gM   - Matrix of the overall mass of the shell; 

gK    - the the overall stiffness matrix of the shell; gC   - 

The overall resistance matrix of the shell, calculated by the 

formula: ( )gg gC M K     =  +      . 

Equation (6) is a nonlinear differential equation that is 

solved by the Newmark method combined with the 

Newton-Raphson iterative method. 

 

V. NUMERICAL RESULTS AND DISCUSSION 

5.1. The starting problem: 

Structural parameters: Three - phase composite pillar 

panel, rectangular projection size, total thickness h = 

0,0025m, radius of curvature R = 1,0m, length L = 0,30 m, 

opening angle  = 300. The composite shell consists of 5 

layers, the composite layers are made of Graphite/Epoxy 

T300/976, each layer has a thickness of h1 = 0,0005m; the 

ratio of grain and matrix is 0,3. Considering the case of 

composite layers arranged symmetrically [-α/ α /0/ α /- α], 

with α = 450, 

Material characteristics of Graphite/Epoxy T300/976 

are as follows: Graphite-Epoxy T300/976 : E11 = 150.109 

N/m2, E22 = E33 = 9.109 N/m2, G12 = G13 = 7,1.109 N/m2, 
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G23 = 2,5.109 N/m2, 12 = 23 = 32 = 0.3, GE = 1600 

kg/m3. 

Load parameters: a short-term load in the form of a 

shock wave distributed on the upper surface of the shell, 

the load is as follows: 

maxp(t) p F(t),

t
1 : 0 t

F(t) .

0 : t







=


−   
= 

  

                                     (7) 

In which: pmax = 1.105 N/m2, = 0,025s. The shell was 

clamped along two straight edges: u = 0, v = 0, w = 0, x = 

0, y = 0, z = 0 at x = 0 and x = a. The center point on the 

upper surface of the shell (point A (Fig.3)) was considered. 

The finite element model of the problem is shown in Fig.4. 

 

Fig. 3: Real model of the problem 

 

Fig. 4: Finite element model of the problem 

 

5.2. The influence of some factors on the nonlinear 

vibration of the shellI  

5.2.1. Effect of nonlinear properties 

To examine the effect of nonlinearity, the linear problem 

was compared with the solved nonlinear problem. Fig. 6 

and Fig.6, Fig.7, Fig.8 and table 1 show the displacement 

and stress variations at point A in two cases. The time 

response of displacement, stress at the calculation point of 

the linear problem is different from the nonlinear problem 

both in amplitude and cycle. In particular, the response 

values of the nonlinear problem are much larger than that 

of the linear problem, which shows that the calculation by 

the nonlinear method is more stable and safer. According 

to the authors, this is the advantage of solving nonlinear 

problems for this particular case. 
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Fig. 6: Time history response of vertical displacement W 

at point A 
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Fig. 7:. Time history response of stress x at point A 
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Fig. 8: Time history response of stress y at point A 

 

Table 1. Maximum displacement and stress at point A 

 
maxW  

(m) 

max

x  

(N/m2) 

max

y  

(N/m2) 

Cases 
Nonlinear 0,00096 4,302.107 0,8305.107 

Linear 0,00077 3,540.107 0,6470.107 

Compare (%) 24,68 21,53 28,36 

5.2.2. Effects of particles ratio 

To consider the influence of particles ratio, the author 

proceeds to solve the problem with 3 cases of different 

particles ratio.  
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Fig. 9: Vertical displacement variation at point A with 

different particles ratio 

 

The time response of displacement at the shell point in 

the cases of different particles ratio is different in both 

amplitude and period. In which, the deflection response 

values in the case of 0.2 is the largest, in the case of 0.4 is 

the smallest in the 3 cases. This shows that in the 

reasonable range of the ratio between the particles and the 

matrix, when increasing the ratio of the particles, the 

response to the maximum displacement will decrease. 

5.2.3. Effect of load amplitude 

Investigate the problem with load amplitude pmax 

varying from 0.5,105N/m2 to 1,66,105N/m2. The results of 

the variation of the maximum values of displacement and 

stress at point A of the shell are shown in graphs in Fig.10, 

Fig.11, Fig.12.  

 

Fig. 10: Displacement Wmax by amplitude pmax of load 

 

 

Fig. 11: Maximum stress by amplitude pmax of load 

 

Fig. 12: Time history response of vertical displacement W 

at point A 

 

The load amplitude has a great influence on the 

dynamic response of the shell. For the survey problem, 

when the load amplitude increases, both the maximum 

displacement and the maximum stress at point A increase 

nonlinearly. The rate of increase of the maximum values of 

displacement and stress is large when pmax is greater than 

1.25.105N/m2. When the load amplitude pmax = 

1,66,105N/m2, both displacement and stress increase very 

strongly, the shell oscillates and balances to another 

position, with hysteresis. According to the dynamic 

stability criterion of Budiansky, B and Roth, R.S [1], the 

shell is destabilized and the critical amplitude value. 

 

VI. CONCLUSIONS 

This paper presents a finite element method to analyze 

the dynamic response of a 3-phase composite cylindrical 

shell under the action of dynamic loads. The formulations 

are based on classical multilayer shell theory taking into 

account geometric nonlinearity. With the numerical survey 

results on the problem classes with the change of many 

parameters, it is the basis for the selection of reasonable 

parameters for the 3-phase composite cylindrical shell 

structure subjected to dynamic loads. 
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