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Abstract— International organizations are still in need for methodologies 

that accurately measures forests above ground biomass (AGB). Among the 

remote sensing technologies, those of Synthetic Aperture Radar (SAR) 

stands out in the modeling of forest biomass due to their ability to 

characterize the geometry of the imaged region. The semantic 

representation, through thematic maps, is one of the main means for the 

geospatial situational understanding. However, there is a gap of 

knowledge for models that are built by the analysis of quantitative and 

qualitative theme-feature in a complementary way. This article aims to 

develop and compare forest biomass estimation models, through an 

innovative methodology, over quantitative and qualitative theme-features. 

To this end, extracted SAR data and specific machine learning (ML) and 

feature selection techniques are applied for each case. The models 

developed are based into forest inventories with 128 plots located in two 

different Brazilian Amazon Forest areas and were built over 231 extracted 

independent variables. The methodology applied used techniques to 

categorize numeric data and, afterwards, comparatively evaluate numeric 

quantitative and categorized qualitative results. The constructions of the 

models were based on ML algorithms such as Multilayer Perceptron, 

Suport Vector Machine and Random Forest. The results showed that the 

different study areas had very different vegetation characteristics, 

significantly impacting the feature selection and ML algorithms. The 

different biomes of the Amazon Forest and their respective characteristics 

demanded specific models and techniques, not fitting into a single pattern. 

importance. 

 

I. INTRODUCTION 

In 2016 more than 190 countries participated in the 21st 

United Nations Conference of the Parties on Climate 

Change (COP-21), held in Paris. This conference aimed to 

continue the Kyoto Protocol, expired in 2012, and, 

consequently, to define goals regarding the emission of 

polluting gases into the atmosphere. Despite the intense 

work, a legally binding treaty, capable of compelling the 

international community to cut greenhouse gas emissions, 

has not been signed. Among the reasons for this failure, 

one of the highlights was the lack of methodologies that 

accurately measures these cuts and establishes mechanisms 

for this reduction  [1,2]. 
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According to the United Nations Framework 

Convention on Climate Change – UNFCCC [3] the Article 

3.4 of the Kyoto Protocol requires countries to report 

annually on changes in carbon stocks associated with 

forest biomass. The Intergovernmental Panel for Climate 

Change [4] and [5] states that reports with this information 

must follow a methodology based on the principles of 

transparency, consistency, comparability, completeness 

and accuracy. 

However, [2,6-7] states that studies quantifying the 

carbon cycle between the atmosphere and forests are still 

needed. [2] points out that 53 to 58% of the carbon cycle 

comes from forests, therefore, accurate data on forest 

biomass are essential for many purposes, including 

subsidizing projects for environmental monitoring and 

Reducing Emissions from Deforestation and Forest 

Degradation (REDD +). [1,8] also states that forest 

biomass should be considered as a source of renewable 

energy and can be a source of income for national 

economies when used as carbon credit. 

Among the remote sensing technologies, those of 

Synthetic Aperture Radar (SAR) stands out in the 

modeling of forest biomass due to their ability to 

characterize the geometry of the imaged region [1,2,6,8-

12]. It also allows the monitoring and the verification of 

the type, direction, intensity and extent of the degradation 

in different areas, caused by human influence or by natural 

forest fires [6,13-16]. Due to the good results obtained by 

researchers, new projects that aims to use SAR data to 

estimate biomass are under execution or planning [6]. The 

Japan Aerospace Exploration Agency (JAXA) project, 

ALOS PALSAR 2, has been underway since 2014 and is a 

source of significant data for recent researches [14,17-20]. 

In Brazil, among the projects that aims to generate 

SAR images and that can be used in biomass estimation, 

the Amazon Radiography Project developed by the 

Geographic Service of the Army (DSG) stands out. By 

2022, a total area of 1,800,000 km2 of the Amazon region 

will be covered with airborne sensors in the X and P bands 

[21]. In addition to the 1:50,000 scale mapping, the project 

also has the potential to generate data to support 

infrastructure projects and sustainable exploitation of 

natural resources in the region [22-24]. 

Due to the large amount of data that can be originated 

from available SAR sensors, it is necessary to apply 

techniques that aims to organize and analyze quantitative 

and qualitative features in an intelligent and automated 

way [20,25-27]. Machine Learning – ML techniques are 

able to model knowledge and make associations between 

different types of quantitative or qualitative information  

[28-29]. According to [30], the main advantages of ML are 

accuracy, since the optimal algorithm is selected from the 

characteristics of the data and the problem to be solved; 

automation in learning, which adjusts the models 

according to the success or failure of the results; 

processing speed; customization, being suitable in any type 

of problem; and scalability, as they are processes that 

adapt to data growth. 

One of the possible applications in ML is the 

development of models involving thematic issues and 

those resulting in qualitative theme-attributes [28-29]. In 

these cases, the theme-attribute is commonly used for the 

construction of thematic maps that includes different areas 

of human geography, from the spatial representation of 

health and social geography [31-33], to characteristics 

related to forest biomass stocks [2,12-13, 16-18].The 

semantic representation, through thematic maps, grows in 

importance, being one of the main means for the geospatial 

situational understanding and, consequently, the 

implementation of public administrations [34-35]. 

Recent published researches referring to biomass 

estimation presents ML originated models which output 

results are quantitative theme-attribute, that is, numerical 

[1,16,18-19]. However, studies that builds and analyzes 

simultaneously quantitative and qualitative theme-

attributes models were not observed. Therefore, it is 

necessary researches that seeks to cover this gap of 

knowledge and that aims at building thematic maps models 

using, in a complementary way, quantitative and 

qualitative theme-attributes.     

This article aims to develop and compare forest 

biomass estimation models built over quantitative and 

qualitative theme-feature based on extracted SAR data. To 

this end, machine learning and feature selection techniques 

are specifically selected and applied for each case. 

 

II. METHOD 

2.1 Study Area and data 

The study areas are located in different geographical 

regions of the Brazilian Amazon rain forest: São Gabriel 

da Cachoeira (SGC), a municipality located on the banks 

of the Rio Negro, in the northwest of the state of 

Amazonas; and the Unini River Extractive Reserve (Unini 

River ExRes) located in the Unini River basin, in the 

municipality of Barcelos. The areas, in white, are 

highlighted in Figure 1, together with the location of some 

of the inventoried plots, in green.
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(A) 

                                     (B)                                                                                                               (C) 

Fig.1:(a) Study areas, highlighted in white; (b) São Gabriel da Cachoeira region; (c) Location of a subset of plots 

inventoried and arranged in the shape of Maltese Cross. 

 

The areas were selected for two reasons: the distinct 

phytoecological and land use and occupation situations 

and the availability of data. The SGC area has hybrid 

characteristics, composed of anthropized regions together 

with dense vegetation. In contrast, the Unini River ExRes 

area is composed only of primary virgin forest vegetation. 

According to [31], the vegetation found in the study 

areas is of forest formation. More specifically, [32] 

indicates that the vegetation found in the São Gabriel da 

Cachoeira area is composed by phytoecological forest 

contact / edaphic formations regions (campinaranas). 

These regions are characterized in three ways: 

(1) dense, submontane forests with dissected relief. 

[32] states that the average AGB volume in the area is 

107.4 m3/ha; 

(2) dense, submontane and undulating forests; and 

(3) dense forests, lowlands and relief with the 

presence of plateaus. 

The Unini River ExRes, in its turn, is an extractive 

conservation unit with about 833 hectares in length and 

characterized in [32] as: 

(1) dense tropical forest, referring to the sub-region 

of the low plateaus of the Amazon; and 

(2) areas of ecological tension with dense alluvial 

presence. 

The remote sensing data was obtained from the ALOS 

PALSAR 2 sensor and the Amazon Radiography Project. 

The working areas are comprised between 0° and 1° south 

latitudes and 67° and 68° west longitudes, for the region of 

São Gabriel da Cachoeira; and between 1° and 2° south 

latitudes and 62° and 63 ° west longitudes, for the Unini 

River ExRes. 

The data from ALOS PALSAR 2 were provided by 

IBAMA and are Level 1.1 – Single Look Complex (SLC) 

processing images in the quadri-polarized strip-map 

imaging mode. 

The Amazon Radiography Project data were provided 

by the [21] with the following characteristics: 
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Castro-Filho et al.                                                 International Journal of Advanced Engineering Research and Science, 8(7)-2021 

www.ijaers.com                                                                                                                                                                            Page | 370  

(1) amplitude orthoimages in X band HH polarization 

and P band quadri-polarized, all with 16 bits 

radiometric resolution and 5 meters spatial 

resolution; 

(2) digital surface models (DSM) and digital terrain 

models (DTM) generated, respectively, from the 

interferometric processing of X and P data, with 

32 bits radiometric resolution and 5 meters spatial 

resolution.  

The AGB data were provided by the National Institute 

of Amazon Researches – INPA, and follow the methods 

developed by [33] and described by [34]. In addition to the 

exact same geographical position as the images, the 

proximity to the region's imaging date was also important 

as it aims to avoid major changes in the analyzed 

vegetation. 

The given biomass data provided was composed of 128 

inventoried plots, 58 plots of São Gabriel da Cachoeira and 

70 of Unini River ExRes, presenting the AGB values 

(ton/ha) and the UTM coordinates of the start and end 

points of each plot. As pointed out by [35-36], different 

allometric equations were used to calculate the inventoried 

plots due to the characteristics of the region. Figure 2 

illustrates the format, the start (P1) and end (P2) points and 

the arbitrary coordinates of each arboreal individual within 

the plot. 

Fig.2:Plot of forest inventory. 

Fig.2:Plot of forest inventory. 

2.2 Methodological approach 

The research was structured according to the flowchart 

shown in Figure 3. Each step is described in the following 

subitems. 

 

 

Fig.3: Methodological Flowchart. 

2.2.1 Forest Biomass Data Processing 

Using analytical geometry techniques, the UTM 

coordinates of each 4 corners of the inventoried plots were 

calculated and the respective vector files for each region of 

interest (ROI) were generated.  

 

2.2.2 SAR Data Processing 

In this stage, the ALOS PARSAR 2 images, obtained in 

SLC format, were processed and the features on the 

available X, L and P bands were extracted. All processing 

steps were performed using the Polarimetric SAR Data 

Processing and Educational Tool (PolSARpro), version 6.0 
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(Biomass Edition), from the European Space Agency 

(ESA). 

The ALOS PALSAR 2 images were processed 

according to the flowchart shown in Figure 4. The 

following parameters were used: 

• multilook processing with 2 looks for the rows 

and 1 look for the columns, as suggested by [19]; 

• Lee Refined speckle filter with 2 looks and 7x7 

size window; 

• calculation of the covariance [C] and coherence 

[T] matrices images, both 3x3; 

• geocoding of the coherence matrix image [T], 

performing the correction of the Range-doppler terrain and 

the respective georeferencing using the digital elevation 

model automatically extracted from the Shuttle Radar 

Topography Mission (SRTM), with 90m spatial resolution; 

• polarimetric calibration and conversion to sigma-

nought (σ0) using Equation 1, where the DN is the Digital 

Number, in amplitude, and CF is the calibration factor in 

dB for the channels [37]. The value applied for the CF was 

-83; and 

• application of target decomposition techniques. 

σ
0
= 10∗ log

10
⟨DN

2⟩+CF
 (1) 

At the end of the SAR data processing, the 

interferometric, incoherent and coherent features were 

extracted according to Table 1. 

Fig.4: ALOS PALSAR 2 image processing. Adapted from 

[19] 

 

 

 

 

Table.1: Extracted Features from SAR Data 

Symbol Description 

SAR Interferometric Features 

Hint Interferometric height – It is the 

difference in altitude between the Digital 

Surface Model (MDS), obtained with the 

X band, and the Digital Terrain Model 

(MDT), obtained with the P band. It 

represents the height of the vegetation. 

Decliv Declivity – It is the slope of the land 

surface in relation to the horizontal, 

obtained through the MDT. 

Incoherent SAR Features 

Xhh Amplitude image of the X band in the 

HH polarization – The backscatter of the 

forest canopy. 

Lhh, Lhv, 

Lvv 

Amplitude image of the L band in the 

polarizations HH, HV or VV – 

Represents the main geometric 

characteristics of arboreal individuals. 

Phh, Phv, Pvv Amplitude image of the P band in the 

polarizations HH, HV or VV – 

Associated with the main geometric 

characteristics of the terrain. 

Lhh-Lhv, 

Lhh-Lvv, 

Lvv-Lhv 

Subtraction between amplitude images in 

the L band polarizations. 

Phh-Phv, 

Phh-Pvv,  

Pvv-Phv 

Subtraction between amplitude images in 

the P band polarizations. 

PC1L, PC2L, 

PC3L 

Principal Components of the amplitude 

images in the L bands polarizations. 

PC1P, PC2P, 

PC3P 

Principal Components of the amplitude 

images in the P bands polarizations. 

Henderson and Lewis Polarimetric Decomposition 

Features [38] 

PR_L, PR_P Ratio between parallel polarizations 

(Parallel Ratio – PR) in the L or P bands 

(PR_Band = Band_vv / Band_hh) – 

Associated with the orientation and shape 

of the backscatter elements in the forest. 
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CR_L, CR_P Ratio between crossed polarizations 

(Crossed Ratio – CR) in the L or P bands 

(CR_Band = Band_hv / Band_hh) – 

Referring to the volumetric backscatter 

of the target. 

TotPow_L, 

TotPow_P 

Total power of the L or P bands 

(TotPow_Band = Band_hh + Band_vv + 

2 * Band_hv) – They represent the sum 

of all backscatter mechanisms occurring 

in the forest. 

Pope Polarimetric Decomposition Features [39] 

BMI_L, 

BMI_P 

Biomass index in bands L or P 

(BMI_Band = (Band_hh + Band_vv) / 2) 

– Indicator of the amount of woody 

structure in the forest.  

CSI_L, 

CSI_P 

Canopy structure index in the L or P 

bands (CSI_Band = Band_vv / (Band_vv 

+ Band_hh)) – Compares the vertical 

structure with the horizontal vegetation. 

VSI_L, 

VSI_P 

Volumetric scattering index in the L or P 

bands (VSI_Band = Band_hv / (Band_hv 

+ BMI_Band)) – Related to the density of 

the canopy, being directly proportional to 

the amount of elements that cause 

multiple type scattering. 

Kim and Zyl Polarimetric Decomposition Features 

[40] 

RVI_L, 

RVI_P 

Radar vegetation index (RVI_Band = 8 * 

Band_hv / (Band_hh + Band_vv + 2 * 

Band_hv)) – Associated with the 

proportion of vegetation in the soil. 

Haralick Textural Features [41] 

The co-occurrence texture features analyzes the 

relationship between pixel pairs values within a window 

and constructs a Grey Level Co-occurence Matrix 

(GLCM). In the texture equations, P (i, j) is the co-

occurrence probability of each pixel value in column i 

and row j; Ng is the number of distinct grey levels in the 

quantized image; µ is the average value of P; σ is the x 

or y deviation pattern of the image.  

J_Me_Band 

Mean (

Me=∑
i= 1

Ng

∑
j= 1

Ng

i∗ P(i,j )

) value 

within the GLCM. 

 

J_Va_Band 

Variance (

Va=∑
i= 1

Ng

∑
j= 1

Ng

(i− μ)2P(i,j )

) 

value within the GLCM. 

J_Ho_Band Homogeneity 

(

Ho=∑
i= 1

Ng

∑
j= 1

Ng

P(i,j )
1

1+(i− j )
2

) is the 

spatial correlation measurement in the 

GLCM. 

 

J_Con_Band 

Contrast (

Con=∑
i= 1

Ng

∑
j= 1

Ng

P(i,j)(i− j )2

) is 

the intensity difference between the 

reference pixels and its neighbors in the 

GLCM. 

J_Di_Band 

Dissimilarity (

Di=∑
i= 1

Ng

∑
j= 1

Ng

P(i,j )| i− j|

) 

is the amplitude difference between the 

reference pixels and its neighbors in the 

GLCM. 

 

J_En_Band Entropy  

(

En=−∑
i= 1

Ng

∑
j= 1

Ng

P(i,j )log(P(i,j ))
) value 

represents the randomness between the 

elements of the GLCM 

 

J_Se_Band 

Second Moment (

Se=∑
i= 1

Ng

∑
j= 1

Ng

P(i,j )2

) is 

the second angular moment between the 

elements of the GLCM. 

 

J_Cor_Band Correlation 

(

Cor=

∑
i= 1

Ng

∑
j= 1

Ng

(i,j)P(i,j )− μ
x
μ

y

σ
x
σ

y ) is the 

statistical difference between the 

reference pixels and its neighbors in the 

GLCM. 

Coherent SAR Features 
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Cloude and Pottier Polarimetric Decomposition 

Features [42] 

Alpha  α angle – Dominant type of scattering. 

H Entropy – Proportion in the importance 

of the dominant type of scattering. 

A Anisotropy – Proportion in the 

importance of the secondary and tertiary 

types of scattering. 

Freeman and Durden Polarimetric Decomposition 

Features [43] 

FD_Vol Volumetric – Contribution of the type of 

volumetric scattering, simulating the 

forest canopy. 

FD_Dbl Double Bounce – Result of a set of 

dihedral corner reflectors. 

FD_Odd Superficial – Contribution of the type of 

surface scattering. 

Touzi Polarimetric Decomposition Features [44] 

TAlfa_S1, 

TAlfa_S2, 

TAlfa_S1, 

TAlfa_Sm 

Magnitude (α) - Provides the type of 

symmetry related to the type of scattering 

of the target. 

TPhi_S1, 

TPhi_S2, 

TPhi_S1, 

TPhi_Sm 

Phase (φ) - Represents a more complete 

characterization of the target's scattering 

type. 

TTau_S1, 

TTau_S2, 

TTau_S1, 

TTau_Sm 

Helical angle (τ) - Allows the 

measurement of the target's degree of 

symmetry, distinguishing symmetric and 

asymmetric scattering. 

TPsi_S1, 

TPsi_S2, 

TPsi_S1, 

TPsi_Sm 

Orientation angle (ψ) - Associated with 

the target's angle of inclination. 

Van Zyl Polarimetric Decomposition Features [45] 

VanZ_Vol Volumetric Scattering – Volumetric 

scattering proportion.  

VanZ_Dbl Double Bounce Scattering – Double 

bounce scattering proportion. 

VanZ_Odd Odd Scattering – Surface (odd) scattering 

proportion. 

Yamaguchi Polarimetric Decomposition Features 

[46] 

Yam_Vol Volumetric Scattering – Volumetric 

scattering proportion. 

Yam_Dbl Double Bounce Scattering – Double 

bounce scattering proportion. 

Yam_Odd Odd Scattering – Surface (odd) scattering 

proportion. 

 

2.2.3 Data Structuring 

The data extracted from SAR and the AGB data were 

organized in a single structured spreadsheet, having the 

features represented in columns and the instances, 

referring to each inventoried forest biomass plot, as rows. 

The AGB feature was defined as the theme-feature (or 

“result” or “output” feature) of the structured spreadsheet. 

For each of the extracted features, the arithmetic mean 

of the pixels’ value corresponding to the areas of the 

inventoried AGB plots was calculated. 

The numerical data was used in two different ways. 

First, using the original values of the explanatory feature 

set x = (x1, x2, … , xp)T, so that the multiple regression 

model would be as shown in Equation 2. Second, with the 

logarithmic of the original value, as Equation 3. In all 

cases p is the number of variables, β = (β0, β1,    , βp)T is the 

parameter set, y is the dependent AGB variable and ε is the 

random error. 

y =  β0 + β1x1 +...+ βpx2+ ε  (2) 

ln(y) = ln(β0) + β1ln(x1) +...+ βpln(xp) + ε (3) 

2.2.4 Categorization 

The numerical data of the AGB quantitative feature were 

categorized and associated with one of the 5 (five) 

categories of biomass: "Low", "Medium-Low", "Medium", 

"Medium-High" and "High". The categorization methods, 

used to transform quantitative to qualitative features, were 

of the equal intervals and of the quantile. 

According to [47], the method of equal intervals is 

performed by dividing the theme-feature values in the 

domain range by the number of categories of interest. In 

Equation 4, K is the number of categories defined by the 

user, xmin and xmax, respectively, the minimum and 
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maximum values observed in the theme-feature and δ the 

value of the widths for each category interval. 

δ=(xmax – xmin) /K (4) 

In the quantile method, categorization is performed by 

dividing the total number of instances N by the number of 

categories of interest K. Therefore, at the end of this 

method each category will have the same number of 

objects.  

At the end of the categorization stage, the theme-

feature was classified in one of three possibilities: numeric 

(NumThFe), categorical by the “equal intervals” method 

(EqIntThFe) and categorical by the “quantile” method 

(QuThFe). Then, all other steps were performed for each 

of these cases. 

2.2.5 Feature Selection 

Tests were performed using the filtering type feature 

selection, in comparison to the exhaustive search including 

all features extracted from SAR data. The objective was to 

verify the impacts of the feature selection process on the 

quality of the final AGB models developed. 

The feature selection technique performed was the 

Correlation-based Feature Subset (CFS) Selection, as 

described [48]. In this case, the search method used was 

the greedy Best First, which performs the “hill climb” 

heuristic in the “forward” direction. 

According to [49], the CFS feature selection method is 

adequate to identify features that are related to the AGB by 

using the Pearson correlation coefficient method. 

2.2.6 Modeling 

In the specific cases in which the constructions of the 

models were based on numerical quntitative data, that is, 

when the theme-feature has not been categorized, the 

methods of simple statistical regression – SR and multiple 

statistical regression – MR were used. On the other hand, 

for the specific cases of the qualitative categorized data, 

the methods of logistic statistical regression – LR and 

ordinary decision tree – ODT were applied. 

In addition to these methods, the Multilayer Perceptron 

– MLP, Suport Vector Machine – SVM and Random 

Forest – RF methods were used for all cases. 

The feature selection and the model development steps 

were carried out entirely in the WEKA (Waikato 

Environment for Knowledge Analyzes) system, version 

3.8.4, and followed algorithms described by [50]. 

2.2.7 Development and Evaluation of a Biomass 

Estimation Model 

After the development of the models, the evaluation stage 

is carried out. In the case of the models based on numerical 

data, such as those of statistical regression, there are 

several parameters that can be observed and that reflects 

the assessment. The parameter used in this case was the 

correlation coefficient (r), described by [51]. 

In the case of the models based on categorized 

qualitative data, the assessment was made by building a 

confusion matrix and calculating the respective Kappa 

coefficient of agreement  [52]. Due to the reduced number 

of instances, the process of cross-validation divided into 

10 folds was used, as suggested by [53].2.2.8 

Comparative Analysis between Biomass Estimation 

Models 

Initially, the selected models were those that obtained the 

best correlation coefficient, in the case of the numerical 

quantitative data, and best Kappa coefficient, for the 

models based on categorized qualitative data. 

In order to compare those different type of models, the 

numerical values resulting from the AGB will follow the 

process described in the flowchart presented in Figure 5. In 

this process, numerical quantitative values will be 

categorized using the equal intervals method, followed by 

the assessment obtained through the construction of the 

confusion matrices and calculations of the respective 

Kappa coefficients. 
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Fig. 5: Categorization process for comparative analysis. 

 

III. RESULTS AND DISCUSSION 

3.1 Forest Biomass Data Processing 

From the AGB data granted by INPA, 3 sample sets were 

defined according to the region inventoried: São Gabriel 

da Cachoeira, Unini River ExRes and the joint regions. 

The statistics for each set, referring to the number of pixels 

and AGB in each plot, are shown in Table 2. 

Table.2: Statistics for the number of pixels and AGB in the 

inventoried plots 

Set Joint Regions 

Statistics Number of Pixels 

(un) 

AGB (t/ha) 

Mean 50,59 227,93 

Minimum 35 92,21 

Maximum 72 351,73 

Standard 

Deviation 

7,28 45,21 

Number 

of Plots 

128 plots 

Set São Gabriel da Cachoeira 

Statistics Number of Pixels 

(un) 

AGB (t/ha) 

Mean 50,17 224,95 

Minimum 35 92,21 

Maximum 69 351,73 

Standard 

Deviation 

8,19 52,24 

Number 

of Plots 

58 plots 

Set  Unini River ExRes 

Statistics Number of Pixels 

(un) 

AGB (t/ha) 

Mean 50,93 230,40 

Minimum 39 153,32 

Maximum 72 311,57 

Standard 

Deviation 

6,48 38,65 

Number 

of Plots 

70 plots 

 

3.2 SAR Data Processing 

Together with the features detailed in Table 1, the textural 

features were extracted for all available polarimetric 

bands, that is, Xhh, Phh, Phv, Pvv, Lhh, Lhv and Lvv, for 

3x3, 5x5 and 7x7 window sizes. 

At the end of the SAR data processing, 231 features, or 

independent variables, were extracted, in addition to the 

theme-feature. 

3.3 Categorization 

The categorization by the equal intervals technique 

obtained a δ of 52 (t / ha). Therefore, the AGB categories 

were defined as: Low (below 100 t/ha); Medium-Low 
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(between 100 and 200 t/ha); Medium (between 200 and 

250 t/ha); Medium-High (between 250 and 300 t/ha); and 

High (above 300 t/ha). The number of categorized 

instances was 2 (two) for the Low class, 38 (thirty-eight) 

for Medium-Low, 42 (forty-two) for Medium, 40 (forty) 

for Medium-High and 6 (six) for High. 

The categorization by the quantile method obtained 25 

(twenty-five) or 26 (twenty-six) instances for each 

category. 

3.4 Feature Selection 

The process was carried out separately for numerical 

quantitative and categorized qualitative data. The results of 

the 5 (five) selected features, in decreasing order of 

relevance, are shown in Table 3. In the same table 

Pearson's correlation values between the selected feature 

and the respective theme-feature, quantitative or 

qualitative, was calculated. 

In general, the selected features showed low correlation 

with the biomass theme-feature. The highlight was the Hint 

feature, which achieved a good correlation with the 

quantitative data, in addition to being selected for both 

cases. 

Table.3: Result of the feature selection process 

Quantitative Data Qualitative Data 

Feature Correlation Feature Correlation 

Hint 0.449975 PC3 0.1765 

Lhh -0.188703 Hint 0.1592 

CSI_L -0.046255 TAlphaS3L 0.1059 

FreeOddL 0.125393 7x7_Xhh_S

e 

0.2772 

TPhiS1L 0.10413 7x7_Phh_M

e 

0.2851 

 

3.5 Development of Biomass Estimation Models 

The ML techniques applied in the biomass estimation 

modeling had the following specific configurations: 

(1) SVM – the model applied to numerical quantitative 

data was the SMOreg, specific for statistical regression, as 

described by [54]. The complexity parameter c was 1.0 

and the Radias Basis Function (RBF) kernel used 0.01 

gamma; 

(2) MLP – the models not submitted to the feature 

selection process were built with one (composed of 50 

nodes) or two (composed of 50 and 10 nodes) hidden 

layers. The models submitted to the feature selection 

process were built with one (composed of 5 nodes) or two 

(composed of 5 and 5 nodes) hidden layers; 

(3) RF – the parameter of 100 trees was used in the 

construction of the model; 

(4) ODT – the minimum quantity of 2 instances per node 

was applied. 

The correlation and kappa coefficients resulting from 

the tests are shown in Tables 4, 5, 6 and 7 and have the 

following characteristics: 

(1) Tables 4 and 5 refers to models based on 

numerical quantitative and Tables 6 and 7 to models based 

on categorized qualitative theme-features; 

(2) Tables 4 and 6 refer to the original values and 

Tables 5 and 7 refer to log values of the features ; 

(3) the values before the bars (/) are those obtained 

by models that have not been submitted to the feature 

selection process, while the values after the bars are those 

referring to models with selected features; 

(4) the results in MLP models with an asterisk (*) are 

those obtained with 2 (two) hidden layers and that 

obtained results superior to those of a single hidden layer; 

(5) the results in bold are the best obtained, having 

been highlighted 2 (two) results for each type of region 

and for each type of data (quantitative or qualitative). 

Table.4: Correlation coefficients of AGB estimation 

models for numerical quantitative theme-feature and 

original feature values. 

ML 

Technique 

Joint 

Regions 

São Gabriel 

da 

Cachoeira 

 Unini River 

ExRes 

SR 0.42 /0.42 0.39 /0.39 0.35 /0.43 

MR 0.21 /0.40 0.02 /0.41 0.04 /0.38 

SVM 0.12 /0.21 0.13 /0.13 0.35 /0.12 

MLP 0.07 /0.32* 0.12 /0.70 0.13 /0.23 

RF 0.16 /0.39 0.21 /0.33 0.14 /0.29 
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Table.5: Correlation coefficients of AGB estimation models for numerical quantitative theme-feature and logarithmic feature 

values. 

ML Technique Joint Regions São Gabriel da Cachoeira  Unini River ExRes 

SR 0.49 /0.54 0.49 /0.58 0.30 /0.30 

MR 0.09 /0.41 0.04 /0.25 0.01 /0.31 

SVM 0.20 /0.22 0.16 /0.10 0.29 /0.06 

MLP 0.33 */0.49 0.26 */0.52* 0.06 /0.36* 

RF 0.14 /0.39 0.14 /0.47 0.19 /0.25 

 

Table.6: Kappa index of AGB estimation models for categorized qualitative theme-features and original feature values. 

ML Technique Joint Regions São Gabriel da 

Cachoeira 

 Unini River ExRes 

Categorization 

Method 

Equal 

Intervals 

Quantile Equal 

Intervals 

Quantile Equal 

Intervals 

Quantile 

LR 0.10 /0.22 0.22 /0.15 0.25 /0.10 0.20 /0.10 0.18 /0.35 0.30 /0.33 

MLP 0.22 /0.38 0.32 /0.15 0.18 /0.02 0.13 /0.07 0.31 /0.29 0.14 /0.19 

SVM 0.09 /0.01 0.04 /0.01 0.01 /0.01 0.01 /0.01 0.25 /0.01 0.10 /0.01 

ODT 0.09 /0.19 0.11 /0.11 0.09 /0.01 0.04 /0.01 0.22 /0.48 0.27 /0.21 

RF 0.13 /0.28 0.19 /0.25 0.30 /0.16 0.24 /0.01 0.19 /0.38 0.26 /0.28 

 

Table.7: Kappa index of AGB estimation models for categorized qualitative theme-features and logarithmic feature values. 

ML Technique Joint Regions São Gabriel da 

Cachoeira 

 Unini River EsRes 

Categorization 

Method 

Equal 

Intervals 

Quantile Equal 

Intervals 

Quantile Equal 

Intervals 

Quantile 

LR 0.23 /0.23 0.21 /0.18 0.21 /0.24 0.26 /0.12 0.20 /0.35 0.28 /0.31 

MLP 0.36 /0.24 0.18 /0.17 0.30 /0.12 0.22 /0.16 0.36 /0.47 0.28 /0.32 

SVM 0.05 /0.01 0.05 /0.01 0.01 /0.01 0.02 /0.01 0.01 /0.01 0.06 /0.01 

ODT 0.11 /0.22 0.18 /0.12 0.07 /0.08 0.08 /0.03 0.21 /0.39 0.18 /0.32 

RF 0.24 /0.22 0.22 /0.20 0.26 /0.11 0.26 /0.06 0.24 /0.39 0.31 /0.30 

 

3.6 Comparative Analysis between Biomass Estimation 

Models 

As observed in Tables 4, 5, 6 and 7, in general, there was 

an emphasis on MLP and SR techniques, corresponding to 

58% and 25% of the highlighted results, respectively. MR, 

RF and ODT techniques achieved results close to the best, 

however, with a single highlight. The SVM technique 
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showed results significantly lower than the other 

techniques. 

In the case of the numerical quantitative theme-

feature, presented in Tables 4 and 5, only the MLP and SR 

techniques showed outstanding results. The MR technique 

was not able to increase the r from the input of new 

features. 

The models developed for the categorized qualitative 

theme-feature, Tables 6 and 7, showed an increase in 

results for non-parametric techniques, including MLP, RF 

and ODT. 

The models submitted to the feature selection process 

showed improvement in 73% of the numerical quantitative 

theme-feature cases. In these cases, only 10% worsened 

the results, all of which refers to the SVM technique. 

On the other hand, for the case of categorized 

qualitative theme-feature submitted to the feature selection 

process, the percentages of improvement, worsening and 

maintenance of the results were, respectively, 35%, 10% 

and 55%. In this case, there was no correlation to the ML 

technique. 

Regarding the categorization method, all the best 

results were obtained using the method of equal intervals. 

Despite this, considering all cases, there was not a 

conclusive difference in the results between the 

categorization methods. 

The different areas analyzed also presented different 

results. For the case of the numerical quantitative theme-

feature, the São Gabriel da Cachoeira region obtained the 

best results, unlike the region of the Unini River ExRes 

with the worst results. The opposite result was obtained for 

the case of the categorized qualitative theme-feature. In 

both cases, the results for the joint regions, as they 

aggregate data from both study areas, were average.

In order to carry out the comparative analysis, the 

process shown in Figure 5 was applied. The comparative 

analysis was performed on data from the same regions 

(Joint Regions, SGC or Unini River ExRes), separately for 

quantitative or qualitative data. The results obtained are 

shown in Tables 8, 9, 10, 11, 12 and 13. In all cases, 3 

(three) types of Z hypothesis tests were performed, with a 

significance level (α) of 0.05: 

In order to carry out the comparative analysis, the 

process shown in Figure 5 was applied. The comparative 

analysis was performed on data from the same regions 

(Joint Regions, SGC or Unini River ExRes), separately for 

quantitative or qualitative data. The results obtained are 

shown in Tables 8, 9, 10, 11, 12 and 13. In all cases, 3 

(three) types of Z hypothesis tests were performed, with a 

significance level (α) of 0.05: 

• test to analyze the hypothesis of Kappa * (value 

referring to the first selected model) being equal 

to zero;  

• test to analyze the hypothesis of Kappa ** (value 

for the second selected model) to be equal to 

zero;  

• and test to analyze the hypothesis whether the 

difference between Kappa * and Kappa ** is 

significantly greater (or lower) than zero, that is, 

if both are significantly different.

Table.8: Comparative analysis between confusion matrices: numerical quantitative theme-feature of the joint region. 

C
a

te
g

o
ri

ze
d

 

SR over logarithmic values (r=0.54)* MLP over logarithmic values (r=0.49)** 

Reference Reference 

Category Low 
Medium

-Low 
Medium 

Medium-

High 
High Low 

Medium

-Low 
Medium 

Medium

-High 
High 

Low 0 0 0 0 0 0 1 0 0 0 

Medium-

Low 
2 6 2 4 0 2 6 1 0 0 

Medium 0 9 21 9 3 0 8 18 13 3 

Medium-

High 
0 1 1 1 1 0 1 5 1 0 
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High 0 0 0 0 0 0 0 0 0 1 

Kappa*: 0.17; Kappa Variance*: 0.0057 

Global Acuracy*: 47% 

Kappa**: 0.13; Kappa Variance**: 0.0073 

Global  Acuracy**: 43% 

Analysis: 

Hypothesis Z-Test: Kappa* = 0 

Kappa is significantly higher than zero (z=2.25; p-value=0.0123; α=0.05) 

 

Hypothesis Z-Test: Kappa** =0 

Kappa** is significantly higher than zero (z=2.25; p-value=0.0123; α=0.05) 

 

Hypothesis Z-Test: Kappa*- Kappa**=0 

Kappa*- Kappa** is significantly higher than zero (z=2.25; p-value=0.0123; α=0.05) 

 

Table.9: Comparative analysis between confusion matrices: numerical quantitative theme-feature, from SGC. 

C
a

te
g

o
ri

ze
d

 

MLP over original values (r=0.70)* RS over logarithmic values (r=0.58)** 

Reference Reference 

Category 
Lo

w 

Medium

-Low 
Medium 

Medium

-High 
High Low 

Medium

-Low 
Medium 

Medium

-High 
High 

Low 0 1 0 0 0 0 0 0 0 0 

Medium-

Low 
2 5 1 0 0 2 5 2 4 0 

Medium 0 10 18 5 0 0 10 17 8 3 

Medium-

High 
0 0 3 9 1 0 1 3 2 1 

High 0 0 0 0 3 0 0 0 0 0 

Kappa*: 0.42; Kappa Variance*: 0.0082 

Global Acuracy*: 60% 

Kappa**: 0.11; Kappa Variance**: 0.0064 

Global Acuracy**: 41% 

Analysis: 

Hypothesis Z-Test: Kappa* = 0 

Kappa is significantly higher than zero  (z=4.68; p-value=0.0000; α=0.05) 

 

Hypothesis Z-Test: Kappa** =0 

Kappa** is not significantly higher than zero  (z=1.41; p-value=0.0798; α=0.05) 

 

Hypothesis Z-Test: Kappa*- Kappa**=0 

Kappa*- Kappa** is significantly higher than zero  (z=2.57; p-value=0.0050; α=0.05) 
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Table.10: Comparative analysis between confusion matrices: numerical quantitative theme-feature, from Unini River ExRes. 
C

a
te

g
o

ri
ze

d
 

RS over original values (r=0,43)* MLP over logarithmic values (r=0,36)** 

Reference Reference 

Category 
Lo

w 

Medium

-Low 
Medium 

Medium

-High 
High Low 

Medium

-Low 
Medium 

Medium

-High 
High 

Low 0 0 0 0 0 0 0 0 0 0 

Medium-

Low 
0 0 1 0 0 0 0 0 0 0 

Medium 0 16 17 18 0 0 15 18 7 0 

Medium-

High 
0 0 0 6 2 0 1 0 13 1 

High 0 0 0 0 0 0 0 0 4 1 

Kappa*: 0.10; Kappa Variance*: 0.0029 

Global Acuracy*: 38% 

Kappa**: 0.33; Kappa Variance**: 0.0046 

Global Acuracy**: 53% 

Analysis: 

Hypothesis Z-Test: Kappa* = 0 

Kappa is significantly higher than zero  (z=1.89; p-value=0.0295; α=0.05) 

 

Hypothesis Z-Test: Kappa** =0 

Kappa** is significantly higher than zero  (z=4.85; p-value=0.0000; α=0.05) 

 

Hypothesis Z-Test: Kappa*- Kappa**=0 

Kappa*- Kappa** is significantly lower than zero  (z=-2.62; p-value=0.0045; α=0.05) 

 

Table.11: Comparative analysis between confusion matrices: categorized qualitative theme-feature, from the joint region 

C
a

te
g

o
ri

ze
d

 

MLP over original values* MLP over logarithmic values** 

Reference Reference 

Category 
Lo

w 

Medium

-Low 
Medium 

Medium

-High 
High Low 

Medium

-Low 
Medium 

Medium

-High 
High 

Low 0 0 0 0 0 2 0 0 0 0 

Medium-

Low 
2 25 12 4 1 0 18 10 10 0 

Medium 0 7 23 13 2 0 13 24 6 1 

Medium-

High 
0 6 7 23 1 0 7 8 24 2 
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High 0 0 0 0 2 0 0 0 0 3 

Kappa*: 0.38; Kappa Variance*: 0.0039 

Global Acuracy*: 57% 

Kappa**: 0.36; Kappa Variance**: 0.0042 

Global Acuracy**: 55% 

Analysis: 

Hypothesis Z-Test: Kappa* = 0 

Kappa is significantly higher than zero  (z=6.00; p-value=0.0000; α=0.05) 

 

Hypothesis Z-Test: Kappa** =0 

Kappa** is significantly higher than zero  (z=5.60; p-value=0.0000; α=0.05) 

 

Hypothesis Z-Test: Kappa*- Kappa**=0 

Kappa*- Kappa** is not significantly different than zero  (z=0.19; p-value=0.4255; α=0.05) 

 

Table.12: Comparative analysis between confusion matrices: categorized qualitative theme-feature, from SGC. 

C
a

te
g

o
ri

ze
d
 

RF over original values* MLP over logarithmic values** 

Reference Reference 

Category 
Lo

w 

Medium

-Low 
Medium 

Medium-

High 
High Low 

Medium

-Low 
Medium 

Medium-

High 
High 

Low 2 0 0 0 0 1 0 1 0 0 

Medium-

Low 
0 10 7 4 0 0 8 8 2 0 

Medium 0 5 14 6 3 1 5 10 4 0 

Medium-

High 
0 1 1 4 1 0 3 3 7 1 

High 0 0 0 0 0 0 0 0 1 3 

Kappa*: 0.30; Kappa Variance*: 0.0088 

Global Acuracy*: 52% 

Kappa**: 0.30; Kappa Variance**: 0.0091 

Global Acuracy**: 50% 

Analysis: 

Hypothesis Z-Test: Kappa* = 0 

Kappa is significantly higher than zero  (z=3.16; p-value=0.0008; α=0.05) 

 

Hypothesis Z-Test: Kappa** =0 

Kappa** is significantly higher than zero  (z=3.20; p-value=0.0007; α=0.05) 

 

Hypothesis Z-Test: Kappa*- Kappa**=0 

Kappa*- Kappa** is not significantly different than zero  (z=-0.06; p-value=0.4762; α=0.05) 
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Table.13: Comparative analysis between confusion matrices: categorized qualitative theme-feature, from Unini River ExRes. 
C

a
te

g
o

ri
ze

d
 

ODT over original values* MLP over logarithmic values** 

Reference Reference 

Category 
Lo

w 

Medium

-Low 
Medium 

Medium-

High 
High Low 

Medium

-Low 
Medium 

Medium-

High 
High 

Low 0 0 0 0 0 0 0 0 0 0 

Medium-

Low 
0 12 5 4 0 0 14 8 4 0 

Medium 0 3 14 3 0 0 4 9 2 0 

Medium-

High 
0 7 1 17 0 0 4 3 20 0 

High 0 0 0 2 2 0 0 0 0 2 

Kappa*: 0.48; Kappa Variance*: 0.0069 

Global Acuracy*: 64% 

Kappa**: 0.47; Kappa Variance**: 0.0071 

Global Acuracy**: 64% 

Analysis: 

Hypothesis Z-Test: Kappa* = 0 

Kappa is significantly higher than zero  (z=5.76; p-value=0.0000; α=0.05) 

 

Hypothesis Z-Test: Kappa** =0 

Kappa** is significantly higher than zero  (z=5.61; p-value=0.0000; α=0.05) 

 

Hypothesis Z-Test: Kappa*- Kappa**=0 

Kappa*- Kappa** is not significantly different than zero (z=0.08; p-value=0.4697; α=0.05) 

 

From the analysis of the results presented in the tables, 

it is observed that the kappa values obtained by the post-

modeling categorization process (Tables 8, 9 and 10), in 

general, were lower than those obtained in the pre-

modeling categorization process (Tables 11, 12 and 13). In 

both cases, the ML techniques built specific models for 

quantitative or qualitative data, suffering loss of accuracy 

in the transformation process between these types of data. 

Due to the loss of accuracy in the post-modeling 

categorization process, the best results obtained are shown 

in Table 13, with insignificant difference in the kappa 

values for the ODT (Kappa = 0.48) and MLP (Kappa = 

0.47). 

The values obtained by the Kappa coefficient, in 

addition to serving as parameters for comparison between 

the categorizations, can also be evaluated, being classified 

in different linguistic intervals, according to their level of 

agreement, as shown in Figure 6. In this case, according to 

[55], the best results obtained in this research are classified 

as moderate. 

The moderate results obtained may have occurred for 

several reasons, including: the quantity of biomass 

samples; the sampling distribution of biomass values; and 

the low correlation between the biomass theme-feature and 

extracted the extracted features. Regarding the latter, Table 

3 shows the low correlation, including on the selected 

features.
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Fig.6: Linguistic evaluation of Kappa coefficient values. Adapted from [55]. 

 

IV. CONCLUSION 

The present work aimed to develop and compare forest 

biomass estimation models, from different regions of the 

Amazon forest, built over numerical quantitative or 

categorical qualitative theme-feature. For this, ML 

techniques were applied on polarimetric and 

interferometric X, L and P bands SAR data extracted 

features, generating models that were analysed and 

compared. 

In an innovative way, the work presents a methodology 

that involves: 

• the process of feature selection and AGB 

estimation models development over quantitative 

and qualitative theme-features. It is noteworthy 

that, for each case, the feature selection and ML 

techniques were specific and configured in order 

to obtain the best results; 

• comparative analyses between quantitative and 

qualitative results. In this case, the post-modeling 

categorization process and the respective 

confusion matrices construction  was performed, 

followed by the comparison using hypothesis 

tests. 

The results showed that the different study areas had 

very different characteristics, significantly impacting the 

feature selection and ML algorithms. The SGC area, due to 

the greater variation in AGB inventoried values (between 

92.21 and 351.73 t/ha), obtained better results with the 

numeric quantitative theme-features. On the other hand, 

Unini’s River ExRes area, that had AGB values with less 

variation (between 153.32 and 311.57 t/ha), was better 

suited to categorized qualitative data modelling.  

The different biomes of the Amazon Forest and their 

respective characteristics demanded specific models and 

techniques, not fitting into a single pattern. This 

conclusion is in agreement with the research of [2] who 

affirms that the heterogeneity of tropical forests is one of 

the main factors for the increasing uncertainty regarding 

the biomass stocks measurement in the region. 

The process of feature selection was unanimous in 

selecting the interferometric height (Hint) as the most 

relevant feature for all areas of study, both in the case of 

qualitative and quantitative theme-features, in agreement 

with the results obtained by [23-24,56-57]. Likewise, there 

was an emphasis on features obtained by target 

decomposition techniques on the L band, from the ALOS 

PALSAR 2 sensor. The textural features, on the other 

hand, did not show significant correlation with the AGB 

values, different from the results obtained by [58]. 

As a conclusion of the presented methodology, there 

was no significant improvement in the AGB estimation 

process, since the results obtained from Kappa varied 

between fair and moderate. Likewise, the post-modeling 

categorization process did not achieve the expected results, 

keeping the Kappa value stable and not being able to 

generalize the AGB values into categories. The result 

obtained may have occurred due to the low correlation 

between the biomass theme-feature and the extracted SAR 

features. 

In order to develop more suitable AGB models for 

different regions of the Amazon Forest, further studies will 

be carried out aiming to adjust the training parameters of 

ML techniques. In this case, the possibility of applying 

search methods and deep learning, commonly used in the 

Artificial Intelligence area to define such parameters, will 

be verified. 

Analysing the possible reasons that led to the limited 

results, two factors were identified that may contribute to 

new research in the area in focus. 

The first factor refers to the inventoried forest 

management plots used as samples. In agreement with the 

quoted by [59-65], a large number of plots, including areas 

with greater variations of AGB values, allows a more 

reliable sample representation and more in-depth statistical 

analysis. 

The second factor is related to the processing of SAR 

data and the possibility of extracting new polarimetric and 

interferometric features. Accessing data in SLC format of 

polarimetric X and P bands would enable the extraction 

and analysis of the respective target decomposition 

features. Likewise, through the construction of a digital 

elevation model in the L band, it would be possible to 

obtain new interferometric heights involving the 
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differences between the X-L and L-P bands and the 

corresponding analyzes. 
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