
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-11, Nov- 2019]

https://dx.doi.org/10.22161/ijaers.611.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 276

Critical Software Processes Tailoring and Very

Small Entities (VSE): A Literature Review
Diniz, G. H 1; Ambrosio, A. M. 2; Lahoz, C. H. N. 3

1,2National Institute for Space Research (INPE), São José dos Campos, SP, Brazil
3Vale do Paraíba University (UNIVAP), São José dos Campos, SP, Brazil

Abstract — Aligned with the worldwide trend of developing using small teams, most of the critical software has

been developed by small organizations, which demand a particular attention to establishment of process

approaches suitable for them. Although there are many software standards, the majority of them do not

specifically aim the needs of organizations such as Very Small Entities (VSEs). Standard processes are usually

tailored based only on the software criticality, and so researches have been conducted about the effects of

project characteristics on software processes and how to use them for processes tailoring. For systematically

determining software processes, they need to be defined according to projects’ characteristics and objectives.

This work provides a review on project evaluation, process profiles, identification of factors which impact

software processes, tools for classifying VSE software projects subject to processes tailoring. Results show the

review organized in topics that surround the research objective, presenting the critical software and VSE

scenario. Critical software and VSE standards comparison indicated that these processes present similarities,

representing opportunities to use them complementarily. Accordingly, the projects’ criteria selection is a means

to support the understanding of the influence factors for critical software projects in VSE context and,

furthermore, to develop a notion on adequate tailoring. A systematic approach can be helpful in the VSE context.

Suggestions for future research are proposed based on the results.

Keywords— Software, evaluation, process, tailoring, VSE.

I. INTRODUCTION

At present the objective of obtaining quality software

products has led to the need of carrying out good software

processes selection, for which a systematic method is an

important aspect. This work explores the fundamental

elements of the process selection, tailoring criteria and

project evaluation.

Software development can be difficult and resource-

consuming (Wiegers, et al., 2013). Therefore, managing its

development activities in an organization is usually

accomplished by introducing techniques, tools, best

practices and process models (Naur, et al., 1969).

According to SEI (2010), organizations should direct their

efforts to three critical dimensions of the software

development process: people; procedures and methods;

tools and equipment.

For the three critical dimensions, standardization is a

significant instrument for increasing quality and

communication among stakeholders during conception,

planning and implementation of projects, while it also

helps to reduce risks and costs associated, making business

more profitable as less time is spent on non-productive

work (Yilmaz, et al., 2016).

Because product quality improvement is typically

achieved by improving their processes, standards have

been published by committees, international technical

entities or regulatory agencies to influence software

development through guidelines for processes and

products considering their associated risks (Munch, et al.,

2012). Software processes have the potential to be highly

complex (Clarke, et al., 2016) and may be subdivided into

tasks and activities. A process is a set of related activities

performed for a particular purpose or outcome (like

develop and maintain software products); a task is an

action with inputs and outputs, which may be a

requirement (must), recommendation (should) or

permission (may); and an activity is a set of tasks (ISO,

2015).

Projects tailor software standard processes to develop

their own defined processes, which account for the unique

characteristics of the project. This tailored process is

referred to in the Capability Maturity Model (CMM) as the

project’s defined software process, comprising a coherent,

integrated set of distinct software engineering and

management processes (SEI, 2010).

Standard processes typically cannot be used without

customization, a tailoring (Ginsberg, et al., 1995), and

https://dx.doi.org/10.22161/ijaers.611.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-11, Nov- 2019]

https://dx.doi.org/10.22161/ijaers.611.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 277

although the need to tailor software processes to specific

project requirements is widely accepted, the way of doing

it is frequently unclear (Kalus, et al., 2013). The European

Cooperation for Space Standardisation (ECSS) (2017a)

and National Aeronautics and Space Administration

(NASA) (2017) recommend tailoring their standard

processes based on the software criticality level (ECSS,

2017b), and it is under responsibility of each organization

to eventually select other criteria to indicate the risk that

the project is prepared to take and the extent to which the

processes are made applicable. Research (Kalus, et al.,

2013) has been conducted on the effects of project factors

for the resulting software process and how to use this

knowledge to choose the ones to be considered for

processes tailoring.

Process tailoring needs to be performed in a thoughtful

and disciplined manner. Interpreting the standard

terminology (i.e. documents, processes, activities, tasks,

roles and artifacts) in such way that each organization

understands is not a trivial task. Tailoring the selected

processes to the project specificities requires criteria for

evaluating the relevance of the activities to the overall

project needs. The subset of applicable processes selected

through project classification can vary, depending mainly

on factors such as type, size, complexity and phase of the

project being addressed.

Since the set of all possible software is very large, a set

of processes suitable for use by all potential organizations

and projects would be either excessively general or

complex, and also difficult to apply. Consequently,

different initiatives have taken place considering the

software environments.

The objective of this research work is to perform a

literature review on approaches for process selection

applicable to critical software projects in Very Small

Entities (VSE). The literature review aims to compare the

VSE practices to the more consolidated critical software

literature, and to explore the systems complexity

environment where both intersect, by reviewing concepts

related to identification of specific criteria that influence

software projects and their implications on processes

considering the typical resources limitations of VSE.

II. METHOD

Research method comprises bibliographic research

with qualitative analysis for background and studies

review. Background review comprises two topics: VSE

and software criticality. And, complementarily, studies

review can be grouped also in two topics: critical software

processes tailoring and software process in VSE. The

research outline is shown in Fig. 1.

Fig. 1: Research outline

2.1 Background review

 The Background review provides the foundation to

situate the context to which this work has been addressed,

comprising two topics: VSE and software criticality.

Fig. 2: Background review

In this work, the VSE contents come from ISO/IEC

29110; and, for software criticality, from ECSS material,

which is based on ISO 9000 family of documents (which

addresses various aspects of quality management), as well

as on ISO/IEC/IEEE 12207 - Systems and software

engineering – Software life cycle processes (an

international standard for software lifecycle processes) and

ISO/IEC 15504 - Information technology – Process

assessment, also termed Software Process Improvement

and Capability dEtermination (SPICE) (derived from

ISO/IEC 12207 and from maturity models like CMM).

The main sources of standards material are:

 ECSS-E-ST-40C. Space Engineering - Software.

 ECSS-Q-ST-80C-Rev.1. Space product assurance

- Software product assurance.

 ECSS-Q-HB-80-02-Part1A. Space product

assurance – Software process assessment and

improvement – Part 1: Framework.

 ECSS-Q-HB-80-02-Part2A. Space product

assurance – Software process assessment and

improvement – Part 2: Assessor Instrument.

 ISO/IEC. (2011a). ISO/IEC 29110-4-1 - Software

engineering — Lifecycle profiles for Very Small

Entities (VSEs) — Part 4-1: Profile

specifications: Generic profile group.

 ISO/IEC. (2011). ISO/IEC TR 29110-5-1-2.

Software Engineering - Lifecycle Profiles for

Very Small Entities (VSEs) - Part 5-1-2:

Management and engineering guide: Generic

Profile Group: Basic Profile.

https://dx.doi.org/10.22161/ijaers.611.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-11, Nov- 2019]

https://dx.doi.org/10.22161/ijaers.611.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 278

2.2 Studies review

The studies review comprises identification and a

synthesis of the papers with greater intersection with the

topics of interest. According to Pai et al. (2004), the core

five steps of a systematic review process are: (i) review

question formulation; (ii) a comprehensive search; (iii)

studies evaluation; (iv) results synthesis; and (v) results

analysis. Fig. 2 presents the systematic review process.

Fig.2: Studies review

Because systematic reviews are time-consuming, when

a decision to conduct a review is made, the first step was

to formulate a clear, focused question and prepare a

protocol. The PICO (Population/Problem, Intervention,

Control/ Comparison and Outcome) framework is often

used to identify the four critical parts of a well-built

research question. The protocol should specify the

population (or the topic of interest), the intervention (or

exposure) being evaluated, the comparison intervention (if

applicable), and the outcome. (Higgins JPT, 2011)A

focused question will help in conducting more specific

searches of databases, and also in creating unambiguous

criteria for selecting studies. TABLE 1 shows the PICO

framework for this review.

Table 1: PICO framework

 Description Keywords

Population/

Problem

Software processes

tailoring

Process,

tailoring

Intervention Critical software

processes in VSE

critical, small

entities

Control/

Comparison

ECSS system + ISO/IEC

29110

ECSS, 29110

Outcome Identification of

initiatives on processes

tailoring for critical

software in VSE

-

Based on TABLE 1 contents, the research question

was: “What initiatives have been proposed for critical

software processes tailoring in very small organizations?”

The search was performed on the selected databases:

“Science Direct”, at www.sciencedirect.com and “IEE

Xplore”, at https://ieeexplore.ieee.org/Xplore, conducting

searches using multiple, alternative terms combined with

the Boolean operators “AND” and “OR” for the keywords

from the PICO set. Using “OR” for each keyword

explodes the search and make it highly sensitive (likely to

yield thousands of results), while using AND dramatically

narrows the search.

The search strings, defined using combinations of the

keywords and extended by adding the term “software”,

were used in the title, abstract and keywords fields,

focusing on exploring works in the field of software

process published since January/2000, including journals

and conference proceedings.

III. RESULTS AND DISCUSSION

3.1 Background review

The first topic presents the VSE fundamentals and

related practices. The second topic presents concepts about

software criticality based on the perspective presented by

ISO and improved by ECSS.

3.1.1 Very Small Entities (VSE)

The term “very small entity” (VSE) has been defined

by ISO/IEC JTC1/SC7 Working Group 24 and

subsequently adopted for use in the ISO/IEC 29110

process lifecycle standard as being “an enterprise,

organization, department or project having up to 25

people” (ISO/IEC, 2011b). They have important

significance in contributing with valuable products and

services as they represent a large majority of enterprises

worldwide (Moll, 2013). Because of their size, VSEs differ

from larger organizations, with most of the management

processes performed more informally and less documented

(O'Connor, et al., 2010).

Even though most of the space software has been

developed by small groups (Lahoz, et al., 2015), most of

the software development Standards do not specifically

aim the needs of small enterprises (O’Connor, et al.,

2010), a scenario that demands particular attention with

establishment of process approaches suitable for small

organizations.

For many small software companies, it is a major

challenge implementing controls and structures to properly

manage their software processes (Larrucea, et al., 2016),

and the lack of formalism in their processes may have

negative consequences, such as missing important

activities and tasks, or having limited ways to demonstrate

their quality and be recognized in their domain,

consequently they may be put aside from projects

(Rodríguez-Dapena, et al., 2017).

https://dx.doi.org/10.22161/ijaers.611.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-11, Nov- 2019]

https://dx.doi.org/10.22161/ijaers.611.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 279

ISO/IEC 29110 series of International Standards and

Technical Reports objectives to assist and encourage very

small software organizations in assessing and improving

their software processes (O'Connor, et al., 2011a). Their

approach (O'Connor, et al., 2011b) relies on the concept of

ISO standardized profiles (SP) making use of pre-existing

international standards, such as the software life cycle

standard ISO/IEC/IEEE 12207 and the documentation

standard ISO/IEC/IEEE 15289. Relevant elements from

those standards have been selected to compose subsets of

applicable processes, referred to as VSE profiles, targeted

to specific project types. The profiles are gathered in

profile groups according to the classification of software

projects, proposing a progressive approach that addresses

most VSEs not involved in critical software development.

ISO/IEC (ISO/IEC, 2016) International Standards and

Technical Reports were developed according to the

characteristics and needs of VSEs. Beyond size, other

factors may affect a profile preparation or selection, such

as: Business Models (commercial, contracting, in-house

development, etc.); Situational factors (such as criticality,

uncertainty environment, etc.); and Risk Levels (Laporte,

et al., 2008). Producing one profile for each combination

of these factors would result in an unmanageable set of

profiles. Consequently, VSE’s profiles are grouped in

such a way to be applicable to more than one category.

A profile group is composed by elements related by

composition of processes (i.e. activities, tasks), by

capability level, or both (O’Connor, et al., 2010). The

Generic profile group, chosen as reference for this work,

comprises a collection of four profiles (Entry, Basic,

Intermediate, Advanced), proposing a progressive

approach to satisfying most of VSEs as it does not imply

any specific domain (ISO/IEC, 2011a).

The four profiles from the Generic profile group are:

 Entry Profile: targets VSEs working on small

projects (e.g. at most six person-months effort)

and for start-up VSEs that do not have significant

experience with large software development

projects, and so do not attract contract jobs from

larger software firms.

 Basic Profile: describes external or internal

projects of a single application by a single team

with no special risk or situational factors. To use

this Profile, the VSE needs to fulfil basic entry

conditions, e.g. documented project statement,

feasibility analysis performed, training personnel

and infrastructure available.

 Intermediate Profile: describes the management

of more than one project in parallel with more

than one work team, comprising processes to

identify opportunities, evaluate all agreements or

requests from customers for fit with

organisational goals and resources, obtain and

provide necessary resources to perform, monitor

and evaluate all projects.

 Advanced Profile: targeted at VSEs wanting to

sustain and grow as an independent competitive

system and/or software development business.

For that it contains processes to move software in

an orderly, planned manner into the operational

status such that the system is functional in the

operational environment, appropriately handle

replaced or retired elements, and to attends

critical needs (e.g. per an agreement, per

organisational policy, or for environmental,

safety, and security aspects).

3.1.2 Criticality

IEEE (2002) describes software “whose failure could

have an impact on safety, or could cause large financial or

social loss” as critical. According to (ECSS, 2017b), if a

software error has the potential to cause human lives loss

or other major or catastrophic consequences, the software

is designated as Safety Critical Software (SCS).

Critical software can be found in several diverse

standard regulated environments, such as: Aerospace,

Aeronautics, Medical, Railway and Nuclear. Software

developments in these different areas must considerer

specific factors such as type of software product, role of

software in the system, size of the system and level of risk.

Software is found from top system functions down to

firmware, including safety and mission critical functions,

presenting different types of risks according to the variety

of possible consequences of a failure in their different

environments. (Marques, 2016)

Critical software main reference of processes is

ISO/IEC 15504 (superseded by ISO 330xx series), also

known as SPICE (Software Process Improvement and

Capability dEtermination), which is based on the Process

Reference Model (PRM) from ISO/IEC 12207. ECSS

definitions are considered for the development of the

present research, because the contents of the model

defined in ECSS-Q-HB-80-02, called SPICE for Space

(S4S), extend SPICE by adding processes and indicators

related to specific RAMS (Reliability, Availability,

Maintainability and Safety) requirements (Fig. 3) from

ECSS standards, to ensure that software is developed to

perform properly and safely, meeting the project’s quality

objectives.

https://dx.doi.org/10.22161/ijaers.611.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-11, Nov- 2019]

https://dx.doi.org/10.22161/ijaers.611.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 280

Fig.3: S4S contents

ECSS standards present the criticality definition based

on the severity of failures consequences (ECSS, 2009), as

described in TABLE 2, where, for each software product

type described in the right column, a correspondent

criticality category is assigned in the left column, based on

the highest criticality of the functions implemented by the

software and the existing system compensating provisions.

According to this classification, software of criticality

category A, B or C is defined as critical; consequently

category D denotes non-critical software (ECSS, 2017a).

Table 2: Software criticality categories definition

Criticality

category

Definition

A Software involved in category I functions

AND: no compensating provisions exist

Software included in compensating

provisions for category I functions

B Software involved in category I functions

AND: at least one of the following

compensating provisions is available:

- A hardware implementation

- A software implementation; this software

shall be classified as criticality A

- An operational procedure

Software involved in category II functions

AND: no compensating provisions exist

Software included in compensating

provisions for category II functions

C Software involved in category II functions

AND: at least one of the following

compensating provisions is available:

- A hardware implementation

- A software implementation; this software

shall be classified as criticality B

- An operational procedure

Software involved in category III functions

AND: no compensating provisions exist

Software included in compensating

provisions for category III functions

D Software involved in category III functions

AND: at least one of the following

compensating provisions is available:

- A hardware implementation

- A software implementation; this software

shall be classified as criticality C

- An operational procedure

Software involved in category IV functions

AND: no compensating provisions exist

Source: Adapted from (ECSS, 2017a)

The software criticality category (A, B, C, D) is

assigned based on safety and dependability aspects,

considering the severity of the eventual failure of the most

critical function it implements (ECSS, 2017b) as shown in

TABLE 3.

Table 3: Function criticality description

Severity Function

criticality

Criteria

Catastrophic

(Level 1)

I A function that if not or

incorrectly performed, or

whose anomalous behavior,

can cause one or more feared

events resulting in

catastrophic consequences

Critical

(Level 2)

II A function that if not or

incorrectly performed, or

whose anomalous behavior,

can cause one or more feared

events resulting in critical

consequences

Major

(Level 3)

III A function that if not or

incorrectly performed, or

whose anomalous behavior,

can cause one or more feared

events resulting in major

consequences

Minor or

Negligible

(Level 4)

IV A function that if not or

incorrectly performed, or

whose anomalous behavior,

can cause one or more feared

events resulting in minor or

negligible consequences

Source: adapted from (ECSS, 2017b)

3.2 Studies review

The number of publications identified by using the

presented criteria is shown in TABLE 4.

https://dx.doi.org/10.22161/ijaers.611.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-11, Nov- 2019]

https://dx.doi.org/10.22161/ijaers.611.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 281

Table 1: Search results – Reference date: 07/Nov/2019

Search string Science

Direct

IEEE

Xplore

software AND process AND small

entities

267 137

software AND ECSS OR 29110 13 68

software AND small entities AND

tailoring AND process

54 10

software AND critical AND small

entities

138 36

Total 472 251

As TABLE 4 shows, the initial search run on Science

Direct returned 472 papers and on IEEE Xplore returned

251 papers in total. After a review of titles, duplicate and

irrelevant papers were removed and the abstracts review

resulted in the selection of 30 publications for further

analysis.

After reading completely the selected publications, the

data extracted was summarized in this section, divided into

two main topics: Critical Software Process Tailoring and

Software Processes in Small Entities.

The first topic presents the critical software processes

tailoring fundamentals and current limitations analyzed

through an historical perspective and according to topics of

interest for this research. The second topic presents

methodologies and best practices related to software

processes in small entities.

3.2.1 Critical Software Processes Tailoring

As software development organizations’ needs may

vary according to multiple factors, any process model to be

implemented should be capable of dealing with their

differences. Although comprehensive top-down

prescriptive models such as CMMI and ISO/IEC 15504

(SPICE) have been used (Gorschek, et al., 2006), literature

reports that these so-called heavy models and their

evaluation methods are considered expensive by small

organizations (Cater-Steel, 2004) (Laryd, et al., 2000)

(Johnson, et al., 1997) (Kelly, et al., 1999) (Villalón, et al.,

2002) (Schoeffel, et al., 2015), which is related to these

models not being extensively deployed and their influence

in software industry remains more at a theoretical level

(Laporte, et al., 2015).

SPICE initially had several limitations. Routa et al.

(2007) reviewed the evolution of the Standard and the

parallel achievements of the SPICE Project and the

standardization effort in advancing the state of the art in

process assessment and improvement. Their work presents

the significant advances in understanding of the nature of

process capability and its evaluation that have been made

possible through SPICE, although it does not present the

processes.

Because software malfunctions due to poorly written

requirements may cause financial loss, Véras et al. (2015)

proposed a benchmark, with 3 checklists to assess the

quality of space software specifications, providing a

simple and effective way to identify weaknesses and

maturity degree of requirements documents. The checklists

were applied to telecommand and telemetry software in the

Requirements Definition phase.

In (Bujok, et al., 2016) standards from different

domains are mapped revealing the presence of common

requirements and the potential for the identification of a

“Common Core” to be used as a unified framework,

addressing the need to comply with multiple international

standards regulations in safety critical domains.

Studies have proposed criteria other than criticality for

tailoring development processes, mainly related to the

variables used for software effort estimation (Kalus, et al.,

2013), also demonstrating the correlation between

software quality metrics and aspects such as team skill

(Wang, et al., 2006).

Kalus & Kuhrmann (2013) present a Systematic

Literature Review about criteria for software process

tailoring, comprising the dependencies between different

criteria and their influence in the software process,

concluding that the consequences of the criteria usage

remain abstract and are to be interpreted on a project-per-

project basis. Their set of 49 project factors that influence

software processes tailoring is organized and presented,

comprising the names and brief descriptions of project

factors categorized in: team - characteristics of the people

involved in the project; internal environment -

organizational aspects of the project’s entity; external

environment - context where the project takes place;

objectiveness - product related features.

Pedreira, et al. (2007) conducted a study about the current

practice in software process tailoring, concluding that

existing approaches for process tailoring are defined in

specific environments, and that a general framework

should be developed. The idea of a generic systematic

framework is corroborated by (Xu, et al., 2008), that

present an investigation about software projects

challenges based on interviews, concluding that tailoring

affects the software process and environment, and that

excessive tailoring can undermine process repeatability

and consistency.

Estimation techniques may be applied for the definition of

project processes. The main methods for estimation are

based either on algorithmic estimation models or on expert

https://dx.doi.org/10.22161/ijaers.611.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-11, Nov- 2019]

https://dx.doi.org/10.22161/ijaers.611.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 282

estimation techniques, commonly used for appraising

software development effort (Jørgensen, et al., 2007).

Expert estimation is considered a light process, involving a

small number of documentation, as expert estimation relies

on expertise to subjectively assess the involved factors,

using experts “intuition” alone or combined with historical

data and/or checklists, when available, to make estimates

(Jørgensen, 2004).

Software estimation approaches lack studies supporting

them in detail, though the usual checklist consists of the

typical activities (e.g., requirements management, design,

prototype, testing, documentation etc.) in a software

project (Usman, et al., 2018).

Jørgensen & Molokken (2003) proposed a preliminary

checklist, to be customized to include only relevant issues,

structured on a project management framework

considering scopes comprehending since the typical

estimation activity until different project phases. In the

VSE critical software context, it may not be feasible to use

long checklists covering aspects beyond the typical

estimation.

3.2.2 Software Processes in Small Entities

Given the limitations in terms of people and money that

small organizations have due to their size, they face many

challenges in running process assessments (Basri, 2011).

Considering this, the assessment method proposed by Pino

et al. (2010) sets out the elements needed to assist with

diagnosing the process step-by-step in small organizations

developing non-critical software while seeking to make the

assessment application economically feasible in terms of

resources and time.

VSE usually consider that SPI frameworks: are either

too expensive to deploy or do not take organizations’

specific needs into consideration. Pettersson et al. (2008)

presents a light weight assessment and improvement

planning (iFLAP) that enables practitioners to base

improvement efforts on the issues that are the most critical

for the specific organization. Their packaged improvement

framework, containing both assessment and improvement

planning capabilities, was applied to non-critical software

case studies, without presenting the software processes

involved.

Evidence has shown that the majority of very small

organizations are not adopting existing standards and best

practice models because they perceive them as developed

by and orientated towards large organizations, therefore

pointing out the relevance of the number of people

involved in a software project (O'Connor, et al., 2009).

Zarour, et al. (2015) analyzed the reasons behind small

organizations failures in Software Process Improvement

(SPI). They investigated, through a literature review, the

pieces of knowledge and their frequencies that form the

best practices for the successful design and

implementation of lightweight software process models.

They do not present the software processes, but classify a

set of 38 best practices into five main categories, covering

all aspects of the assessment, namely: assessment method,

supportive tool, procedure, documentation, and users.

Yousefal-Tarawneh et al. (2011) proposed the use of

XP as software development model and CMMI as SPI

model because, SPI traditional models were developed to

help large and very large organizations. They present their

development process improvement framework, which does

not consider Safety Critical Software aspects, comprising

the method’s stages for developing suitable software by

using CMMI-DEV V1.2.

Sanchez-Gordon et al. (2017) reviewed relevant

standards, such as ISO/IEC 29110, ISO 10018, OMG

Essence and ISO 33014, to develop a framework to

integrate human factors in software processes. Their

proposed approach integrates international standards in a

comprehensive, yet practical, framework addressing the

human factors of small companies developing non-critical

software. And Laporte & O’Connor (2017) presented an

overview of eight implementations process improvement

standards and guides for non-critical software in VSE,

with a four-stage roadmap to support process improvement

activities using ISO/IEC 29110.

Laporte, O’Connor, & Paucar (2015) present seven

case studies involving pilot usage of ISO/IEC 29110,

comprising a project classification into three categories

(small, medium and large), based on characteristics such as

duration, team size, number of engineering specialties and

engineering fees. This study demonstrated that it is

possible to plan and execute non-critical software projects

in small settings using proven practices to significantly

reduce the number of discrepancies.

Rodríguez-Dapena & Lohier (2017) proposed a step-

wise approach to participate in space projects in a feasible

way, adding processes from ECSS-Q-HB-80 (S4S) and

capability from ISO/IEC 15504 to one of the profiles

presented in ISO/IEC 29110. This approach considers

different subsets of processes and levels of process

capability, but it is only applicable for software criticalities

levels D (non-critical) and C (low criticality).

IV. CONCLUSION

The purpose of this review was to outlook the trends in

critical software development studies in VSE within the

past twenty years, identifying which practices have been

applied to adapt standards and models to software projects.

https://dx.doi.org/10.22161/ijaers.611.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-11, Nov- 2019]

https://dx.doi.org/10.22161/ijaers.611.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 283

Many studies have been proposed to describe process

tailoring for software development. The reviewed

publications make evident that the tailoring criteria must

regard the project specificities to define what processes

need to be performed. Furthermore, the methods to select

criteria and processes are varied and the development

organization is in charge of defining how to implement.

From the research reviewed, it is clear that standard

processes are very immersed and widely practiced

throughout in development organizations. Along with this,

it is also clear that the field of processes tailoring is varied

and continues to be studied and analyzed in order to most

benefit the product quality. Critical software process

tailoring in VSE is still an open issue, though, as the

results show scarce research for critical software processes

considering the VSE context. This topic is very important

as at its center is a concern with helping VSE become

better and demonstrate the quality of their processes and

products, consequently suggesting the potential of VSE

processes within critical software projects scope.

Critical software and VSE standards comparison

indicated that these processes present similarities,

representing opportunities to use them complementarily.

Accordingly, the projects’ criteria selection is a means to

support the understanding of the influence factors for

critical software projects in VSE context and, furthermore,

to develop a notion on adequate tailoring.

A systematic approach for process tailoring can be

helpful in the VSE context, where team-based expert

estimation is usual, there is lack of documentation and new

team members might not be aware of all activities and

factors that should be accounted for during estimation.

Frequently process tailoring is informally performed in

VSE and the lack of a documented approach is also likely

to result in the loss of useful experience from previous

projects.

Further studies are necessary on the use of adequate

profiles, comprising simplified and flexible sets of

processes according to each software project evaluation,

providing evidence on their feasibility with evaluation of

their completeness, applicability and usability for critical

software in VSE.

REFERENCES

[1] Basri, S. O. (2011). A study of software development team

dynamics in SPI. Systems, Software and Services Process

Improvement (EuroSPI 2011), vol. 172, 143-154. Springer-

Verlag.

[2] Bujok, A. B., MacMahon, S. T., Grant, P., Whelan, D.,

Rickard, W. J., & McCaffery, F. (2017). Approach to the

development of a Unified Framework for Safety Critical

Software Development. Computer Standards & Interfaces.

[3] Bujok, A. B., MacMahon, S. T., McCaffery, F., Dick

Whelan2, B. M., & Rickard, W. J. (2016). Safety Critical

Software Development – Extending Quality Management

System Practices to Achieve Compliance with Regulatory

Requirements. International Conference on Software

Process Improvement and Capability Determination.

[4] Cater-Steel, A. (Dec de 2004). PhD Thesis. An evaluation

of software development practice and assessment-based

process improvement in small software development firms.

Queensland, Australia: Griffith University.

[5] Clarke, P., O’Connor, R., & Leavy, B. (2016). A

complexity theory viewpoint on the software development

process and situational context. Proceedings of the

International Conference on Software and Systems Process

(ICSSP ‘16). New York, NY, USA: ACM.

[6] ECSS. (2009). ECSS-Q-ST-30-02C. Space product

assurance - Failure modes, effects (and criticality) analysis

(FMEA/FMECA). ECSS.

[7] ECSS. (2009a). ECSS-E-ST-40C. Space Engineering -

Software. Noordwijk, The Netherlands: ESA Requirements

and Standards Division.

[8] ECSS. (2010a). ECSS-Q-HB-80-02-Part1A. Space product

assurance – Software process assessment and improvement

– Part 1: Framework. Noordwijk, The Netherlands: ESA

Requirements and Standards Division.

[9] ECSS. (2010b). ECSS-Q-HB-80-02-Part2A. Space product

assurance – Software process assessment and improvement

– Part 2: Assessor Instrument. Noordwijk, The

Netherlands: ESA Requirements and Standards Division.

[10] ECSS. (2017a). ECSS-Q-ST-80C-Rev.1. Space product

assurance - Software product assurance. Noordwij, The

Netherlands: ESA Requirements and Standards Division.

[11] ECSS. (15 de Feb de 2017b). ECSS-Q-ST-30C-Rev.1.

Space product assurance - Dependability. ECSS.

[12] Ginsberg, M., & Quinn, L. (November de 1995). Process

tailoring and the software capability maturity model.

Technical Report CMU/SEI-94-TR-024. Pittsburgh, PA,

USA: Software Engineering Institute.

[13] Gorschek, T., & Wohlin, C. (11 de 2006). Requirements

Abstraction Model. Requirements engineering journal, pp.

79-101.

[14] Higgins JPT, Green S (editors). Cochrane Handbook for

Systematic Reviews of Interventions Version 5.1.0 [updated

March 2011]. The Cochrane Collaboration, 2011. Available

from www.handbook.cochrane.org

[15] IEEE. (2002). IEEE Std 610.12-1990(R2002) . IEEE

Standard Glossary of Software Engineering Terminology.

USA.

[16] ISO. (2015). ISO 9000:2015. Quality management systems

— Fundamentals and vocabulary. ISO.

[17] ISO/IEC. (2011a). ISO/IEC 29110-4-1 - Software

engineering — Lifecycle profiles for Very Small Entities

(VSEs) — Part 4-1: Profile specifications: Generic profile

group. Geneva - Switzerland: ISO.

[18] ISO/IEC. (2011b). ISO/IEC TR 29110-5-1-2 - Software

engineering — Lifecycle profiles for Very Small Entities

(VSEs) — Part 5-1-2: Management and engineering guide:

https://dx.doi.org/10.22161/ijaers.611.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-11, Nov- 2019]

https://dx.doi.org/10.22161/ijaers.611.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 284

Generic profile group: Basic profile. Geneva - Switzerland:

ISO.

[19] Johnson, D. L., & Brodman, J. G. (vol 8 de 1997).

Tailoring the CMM for small businesses, small

organizations, and small projects. Software Process

Newsletter - IEEE Computer Society.

[20] Jørgensen, M. (2004). A review of studies on expert

estimation of software development effort. Journal of

Systems and Software , pp. 37–60.

[21] Jørgensen, M., & Molokken, K. (2003). A preliminary

checklist for software cost management Quality Software.

2003 Proceedings Third International Conference, 134–

140. IEEE.

[22] Jørgensen, M., & Shepperd, M. (2007). A systematic

review of software development cost estimation studies.

IEEE Transactions on Software Engineering.

[23] Kalus, G., & Kuhrmann, M. (2013). Criteria for Software

Process Tailoring: A Systematic Review. ICSSP 2013

Proceedings of the 2013 International Conference on

Software and System Process, 171-180. New York: ACM

International Conference Proceeding Series.

[24] Kelly, D. P., & Culleton, B. (1999). Process improvement

for small organizations. Computer, 32(10), 41-47. IEEE.

[25] Lahoz, C. H., Richter, S., & Rico, D. E. (2015). Rapid

Software Process Assessment in the space domain for Very

Small Entities. ESA Software Product Assurance

Workshop. Frascati, Italy.

[26] Laporte, C. Y., & O’Connor, R. V. (2017). Software

Process Improvement Standards and Guides for Very Small

Organizations: An Overview of Eight Implementations.

CrossTalk - The Journal of Defense Software Engineering,

30(3).

[27] Laporte, C. Y., O’Connor, R. V., & Paucar, L. H. (2015).

Software Engineering Standards and Guides for Very Small

Entities: Implementation in two start-ups. 10th

International Conference on Evolution of Novel

Approaches to Software . Barcelona, Spain.

[28] Laporte, C. Y., O'Connor, R. V., & Paucar, L. H. (2016).

The Implementation of ISO/IEC 29110 Software

Engineering Standards and Guides in Very Small Entities.

Evaluation of Novel Approaches to Software Engineering.

ENASE 2015. Communications in Computer and

Information Science, 599, 162-179. Barcelona, Spain:

Springer.

[29] Laporte, C., Alexandre, S., & O’Connor, R. (2008). A

Software Engineering Lifecycle Standard for Very Small

Enterprises. EuroSPI2008, 129 - 141. Springer-Verlag.

[30] Larrucea, X., O’Connor, R. V., Colomo-Palacios, R., &

Laporte, C. Y. (March-April de 2016). Software Process

Improvement in Very Small Organizations. IEEE Software,

pp. 85 - 89.

[31] Laryd, A., & Orci, T. (2000). First Argentine Symposium

on Software Engineering. 133-149. Tandil: ASSE.

[32] Marques, J. C. (2016). MACRE-SAR: An Agile Model for

Software Requirements Specification in Regulated

Environments. Doctor Thesis.

[33] Moll, R. (2013). A bird’s eye view of SMEs and risk

management. ISO Focus+. Geneva, Switzerland:

International Organization for Standardization.

[34] Munch, J., Armbrunt, O., Kowalczyk, M., & Soto, M.

(2012). Software Process Definition and Management.

Berlim: Springer-Verlag.

[35] NASA. (2017). NASA Systems Engineering Handbook.

NASA SP-2016-6105 Rev2. National Aeronautics and

Space Administration.

[36] NASA Office of Chief Engineer. (2009). NASA Study on

Flight Software Complexity. Pasadena, CA, USA: Systems

and Software Division - Jet Propulsion Laboratory -

California Institute of Technology.

[37] Naur, P., & Randell, B. (1969). Software Engineering: a

report on a conference sponsored by the NATO Science

Comitee. Brussels: NATO.

[38] O’Connor, R., & Laporte, C. (21-23 de June de 2010).

Towards the Provision of Assistance for Very Small

Entities in Deploying Software Lifecycle Standards. 11th

International Conference on Product Focused Software

Development and Process Improvement (Profes2010).

[39] O'Connor, R., & Coleman, G. (2009). Ignoring ‘Best

Practice': Why Irish Software SMEs are rejecting CMMI

and ISO 9000. Australasian Journal of Information

Systems, Vol. 16,(No. 1).

[40] O'Connor, R., & Laporte, C. (2011a). Deploying Lifecycle

profiles for Very Small Entities: An Early Stage Industry

View. Proceedings of 11th International SPICE Conference

on Process Improvement and Capability dEtermination,

CCIS Vol. 155. Springer-Verlag.

[41] O'Connor, R., & Laporte, C. (2011b). Using ISO/IEC

29110 to Harness Process Improvement in Very Small

Entities, Workshop on SPI in SMEs. 18th European

Software Process Improvement Conference, CCIS Vol.

172. Springer-Verlag.

[42] O'Connor, R., Basri, S., & Coleman, G. (2010). Exploring

Managerial Commitment towards SPI in Small and Very

Small Enterprises. Systems, Software and Services Process

Improvement, CCIS Vol. 99, 268-278. Springer-Verlag.

[43] Pai, M., McCulloch, M., Gorman, J. D., Pai, N., Enanoria,

W., Kennedy, G., . . . Colford, J. M. (2004). Systematic

reviews and meta-analyses: an illustrated, step-by-step

guide. Natl. Med. J. India, pp. 89-95.

[44] Pedreira, O., Piattini, M., Luaces, M. R., & Brisaboa, N. R.

(2007). A Systematic Review of Software Process

Tailoring. ACM SIGSOFT Software Engineering Notes,

Volume 32 (Issue 3). New York: ACM .

[45] Pettersson, F., Ivarsson, M., Gorschek, T., & P.Öhman.

(2008). A practitioner's guide to light weight software

process assessment and improvement planning. Journal of

Systems and Software.

[46] Pino, F. J., Calvache, C. J., Garcia, F., & Piattini, M.

(2010). Assessment methodology for software process

improvement in small organizations. Information and

Software Technology, 52(10), 1044-1061.

[47] Rodríguez-Dapena, P., & Lohier, P. (2017). How small

organizations could participate in Space projects.

https://dx.doi.org/10.22161/ijaers.611.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-11, Nov- 2019]

https://dx.doi.org/10.22161/ijaers.611.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 285

[48] Rodríguez-Dapena, P., & Lohier, P. (2017). How small

organizations could participate in Space projects.

[49] Routa, T. P., Emam, K. E., Fusani, M., Goldenson, D., &

Jung, H.-W. (2007). SPICE in retrospect: Developing a

standard for process assessment. Journal of Systems and

Software.

[50] Schoeffel, P., & Benitti, F. B. (2015). Factors of influence

in software process improvement: A comparative survey

between micro and small enterprises (MSE) and medium

and large enterprises (MLE). IEEE Latin America

Transactions, pp. 1634-1643.

[51] SEI. (Nov de 2010). CMMI-DEV, V1.3. CMMI for

Development, Version 1.3. Pittsburgh, PA, USA: Carnegie

Mellon University.

[52] Usman, M., Petersen, K., Börstler, J., & Neto, P. S. (2018).

Developing and using checklists to improve software effort

estimation: A multi-case study. The Journal of Systems and

Software, 146. Elsevir Inc.

[53] Véras, P. C., Villani, E., Ambrosio, A. M., Vieira, M., &

Madeira, H. (2015). A benchmarking process to assess

software requirements documentation for space

applications. The Journal of Systems and Software.

[54] Villalón, J. A., Cuevas, A. G., SanFeliu, G. T.,

DeAmescua, S. A., García, S. L., & Pérez, C. M. (10 de

2002). Experiences in the application of software process

improvement in SMES. Software Quality Journal, pp. 261-

273.

[55] Wang, Z.-J., Zhan, D.-C., & Xu, X.-F. (May de 2006).

STCIM: a dynamic granularity oriented and stability based

component identification method. ACM SIGSOFT

Software Engineering Notes, 31, 3, 1-14. New York, NY,

USA: ACM.

[56] Wiegers, K., & Beatty, J. (2013). Software Requirements 3.

Washington, USA: Microsoft Press.

[57] Xu, P., & Ramesh, B. (2008). Using Process Tailoring to

Manage Software Development Challenges. IT

Professional, 10, 39-45.

[58] Yilmaz, M., O’Connor, R. V., & Clarke, P. (2016).

Effective Social Productivity Measurements during

Software Development - An Empirical Study. International

Journal of Software Engineering and Knowledge

Engineering.

[59] Yousefal-Tarawneh, M., Abdullah, M. S., & Ali, A. B.

(2011). A proposed methodology for establishing software

process development improvement for small software

development firms. Procedia Computer Science.

[60] Zarour, M., Abran, A., Desharnais, J., & Alarifi, A. (Nov

de 2015). An investigation into the best practices for the

successful design and implementation of lightweight

software process assessment methods: A systematic

literature review. The Journal of Systems and Software

101, pp. 180-192.

https://dx.doi.org/10.22161/ijaers.611.43
http://www.ijaers.com/

