

International Journal of Advanced Engineering Research and

Science (IJAERS)

Peer-Reviewed Journal

ISSN: 2349-6495(P) | 2456-1908(O)

Vol-8, Issue-7; Jul, 2021
Journal Home Page Available: https://ijaers.com/

Article DOI: https://dx.doi.org/10.22161/ijaers.87.44

www.ijaers.com Page | 397

A Simplified Mesh Generation Scheme for 3D Geometries

Composed by Planar Faces to be used with BEM
Geraldo Creci

Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP-BRA)

Av. Major Fernando Valle, 2013 - 12903-000, Bragança Paulista, SP, Brasil.

Email: gcreci@ifsp.edu.br – ORCID: 0000-0003-1578-6520

Received:11 Jun 2021;

Received in revised form: 12 Jul 2021;

Accepted: 19 Jul 2021;

Available online: 30 Jul 2021

©2021 The Author(s). Published by AI

Publication. This is an open access article

under the CC BY license

(https://creativecommons.org/licenses/by/4.0/).

Keywords— boundary element method

(BEM), computational geometry, Delaunay

triangulation, geometrical transformations,

unstructured mesh generation.

Abstract— This paper presents the development of a simplified mesh

generation scheme for three-dimensional boundary element method

(BEM). The developed program presented in this work takes into account

three-dimensional geometries composed by planar faces. This is a

simplification regarding the form of the acceptable geometries, but a great

variety of geometries and problems can be modelled with sufficient

accuracy to perform numerical analysis. The main program’s idea

consists of moving each face belonging to the three-dimensional geometry

to bi-dimensional space using geometrical transformation matrices. In bi-

dimensional space, then, it is applied a bi-dimensional mesh generation

algorithm for element generation. After element generation is done, new

geometrical transformations are applied in order to send the meshed face

back to its original position in three-dimensional space. The continuity of

the final mesh is assured by promoting the discretization of the edges of

the geometry only once. The proposed scheme has several positive aspects

regarding simplicity, efficiency and robustness. A practical and immediate

use of the proposed algorithm can be found for those who already have a

bi-dimensional mesh generator code implemented and intent to expand its

functionalities to treat simple three-dimensional geometries composed by

planar faces. Several examples of meshes in arbitrary three-dimensional

geometries composed by planar faces are presented in order to illustrate

the capabilities of the developed computational program and some

computational simulations have been performed to show the quality of the

meshes in problems with specific boundary conditions.

I. INTRODUCTION

The mesh generation process is crucial for

computational simulations since it strongly affects the

results obtained by the numerical solution of partial

differential equations that govern the analyzed problem [1-

3]. The generated mesh should be able to provide

sufficiently accurate results according to the complexity of

the geometry and physical phenomena involved. Several

complex applications can be analyzed with sufficient

accuracy level [4,5]. In computational numerical

simulations, the pre-processing phase is one of the “bottle-

neck” with respect to the computer processing time. This is

due to the fact that in the pre-processing phase the mesh is

generated and the problem is modelled with specific

boundary conditions. It is very difficult to generate

suitable meshes for problems involving complex three-

dimensional geometries and/or boundary conditions. The

algorithms for three-dimensional mesh generation are

usually very difficult to be implemented for arbitrary cases

and the computational costs are generally expensive [6].

That is why, still nowadays, great efforts and investments

are done to develop new techniques and algorithms for

https://ijaers.com/
https://dx.doi.org/10.22161/ijaers.87.44
http://www.ijaers.com/
https://creativecommons.org/licenses/by/4.0/

Geraldo Creci International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 398

improving the mesh generation process on three-

dimensional geometries. In this paper it is presented a

simplified scheme to implement a three-dimensional mesh

generator to be used in numerical analyses by the

boundary element method. The boundary element method

has some particular features that make it more favorable in

certain types of applications, when compared to other

numerical methods. Among those features, there is the fact

that, in boundary element method, only a discretization of

the geometry boundaries is necessary [7,8]. In other words,

in three-dimensional cases only surface elements must be

generated. This is a huge benefit from the mesh generation

point of view. The algorithm proposed in this work only

takes into account three-dimensional geometries composed

by planar faces. This is a simplification regarding the form

of the acceptable geometries, but a great variety of

geometries and problems can be modelled with sufficient

accuracy to perform numerical analysis. The main

algorithm’s idea consists of moving each face belonging to

the three-dimensional geometry to bi-dimensional space

using geometrical transformation matrices. In bi-

dimensional space, then, it is applied the Delaunay

triangulation method over a grid of points to cover the face

domain with triangular-linear elements, but other

algorithms and elements could also be used taking into

account the general idea. The Delaunay triangulation

method is one of the best methods to generate meshes with

triangular elements devoted to numerical analysis. It has

the property of maximizing the triangles’ minimum

internal angles which is favorable and suitable for

numerical methods in general [9,10]. After element

generation is done, new geometrical transformations are

applied in order to send the meshed face back to its

original position in three-dimensional space. The

continuity of the final mesh is assured by promoting the

discretization of the edges of the geometry only once. This

is essential because each edge belongs to two planar faces

of the three-dimensional geometry. Therefore, no duplicate

nodes should be generated over an edge and the final mesh

is supposed to contain only conformal elements. The

proposed scheme has several positive aspects regarding

simplicity, efficiency and robustness. Firstly, the code is

extremely simplified since the problem is transformed

from three-dimensional space to bi-dimensional space by

using geometrical transformations matrices. The

algorithms for element generation are bi-dimensional, that

is to say, they are much simpler, reliable and easier to be

implemented [11-13]. Regarding efficiency and

robustness, as each face of the three-dimensional geometry

is moved to bi-dimensional space and the mesh is

generated over one face per time, the occurrence of a bad

element generation is minimized. As the whole mesh is

performed face by face, the problem is subdivided in

several small problems and the main algorithm assumes

the divide-to-conquer paradigm, which assures high

efficiency and computer processing velocity [14,15]. A

practical and immediate use of the proposed algorithm can

be found for those who already have a bi-dimensional

mesh generator code implemented and intent to expand its

functionalities to treat simple three-dimensional

geometries composed by planar faces. The generated

surface meshes over these geometries can be used in three-

dimensional boundary element analysis or, even though, in

numerical analysis using the shell finite element

formulation. All the code has been written using the

object-oriented paradigm in C++ combined with UML

notation. Using this approach the program can be easier

modified, the maintenance costs are reduced and new

implementations can be carried out as user’s and/or

programmer’s needs [16].

II. THREE-DIMENSIONAL BOUNDARY

ELEMENT METHOD

The boundary element method is based upon boundary

singular integral equations. The analytical formulation

involves the transformation of the governing differential

equation applicable to the whole domain into an integral

over the boundary [7]. To illustrate the technique it is

presented the elasticity problem in the form of the partial

differential equation known as the Navier equation of

elasticity:

, (1)

where are body force components,

is the shear modulus, is the Young’s modulus, is the

Poisson’s ratio and are displacements components.

Equation 1 can be transformed into an integral equation

over the boundary. The displacement boundary integral

formulation of elasticity can be derived using the

Somigliana’s Identity and Betti’s reciprocity theorem [8].

The fundamental solutions for displacements and tractions

are given respectively by:

 (2)

 (3)

http://www.ijaers.com/

Geraldo Creci International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 399

where , , and

. The load point or source point is represented

by and the field point by . Therefore, the

displacement boundary integral equations for elasticity can

be written, neglecting the body forces , by considering

the limiting process of an internal point that goes to the

boundary [7,8], i.e., , as:

 (4)

where is a function of the contour shape at the

boundary point . From Equation 4 one can note that

there are only boundary dependent terms. Thus, it is not

necessary to generate domain elements in the

discretization procedure. That is why the three-

dimensional mesh generator implemented in this work

only generates surface elements. For simplicity, the mesh

generator was implemented by using a bi-dimensional

Delaunay mesh generation algorithm, which gives origin

to triangular-linear elements, as shown by Figure 1.

Therefore, a boundary element solver with three-

dimensional elasticity isotropic-linear homogeneous

formulation, for example, can be used to perform

numerical analyses considering solid mechanics

engineering problems. Using the shape functions , ,

, Equation 4 can be written in a discretized form as [7]:

Fig.1: Triangular-linear continuous element and its shape

functions.

 (5)

where is the number of nodes per element, is the

total number of elements on the mesh, represents the

number of the node on the mesh that is being evaluated as

source point and is the Jacobian of the transformation.

The Jacobian can be calculated by , where

the subscripts  and  denote the derivatives with respect

to  and , respectively. Equation 5 can be presented in

the matrix form as:

, (6)

which can be rearranged in and readily solved.

III. MESH GENERATION

This work uses bi-dimensional Delaunay triangulation

over a grid of points to generate elements in an arbitrary

planar faces of the three-dimensional geometry. There are

several ways to perform bi-dimensional mesh generation

over an arbitrary planar straight line graph (PSLG). As bi-

dimensional algorithms for mesh generation are

extensively know in literature, the main focus of this paper

is devoted to present the structure of the program that

allows three-dimensional surface mesh generation. To

perform this task, geometrical transformation matrices are

used to move each planar face from the three-dimensional

geometry to bi-dimensional space and vice-versa.

Data Structure

The process to obtain the input file for the mesh

generator presented in this work is illustrated by Figure 2.

First, the three-dimensional geometry is drawn using CAD

software. The three-dimensional geometry must only be

constituted by planar faces. Then, the geometry is saved on

IGES format and an IGES translator developed during this

research project is used to generate the input file accepted

by the mesh generator program. This input file contains the

geometry information in the format presented by Figure

3(a). A similar data structure for the input file can be found

in [11]. The MeshPar parameter is a numerical value

provided by the user. It is given in length unit. This

parameter affects the level of the mesh refinement. The

key-words Vertex, Edge and Facet contain information

about the vertexes, edges and planar faces of the 3D

geometry, respectively. The format of the output file

containing the mesh data is presented by Figure 3(b).

http://www.ijaers.com/

Geraldo Creci International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 400

IGES Translator

CAD Software

Input File for

Mesh Generation

Fig.2: Process to obtain the input file for the mesh

generator.

Fig.3: Data structures: (a) input file and (b) output file.

Computational Aspects

In this subsection the main classes of the developed

program are presented. The classes were modeled by using

the UML notation. A special focus is given to the Node,

Segment, Facet, Element, Triag, Mesh and GeoTrafo

classes, which are the main classes of the program. In

Figure 4 are presented the Node, Element, Triag and

Centroid classes. It is also possible to see the Dictionary

class, with its hidden attributes and methods. The

Dictionary class is very important for the developed

program because it makes possible to read the input data

file easily and efficiently. It can be seen from the diagram

presented in Figure 4 that both the Element and Node

classes depend on the Dictionary class. In fact, the

Segment and Facet classes also depend on it, but they were

not shown in this diagram for simplification purpose.

Fig.4: Class diagram exhibiting the relationship between

Node and Element Classes.

 The Element class has a number of attributes and

methods, as can be seen. The signature of the methods, i.e.,

the type of method and the arguments that are passed to it

were not shown at the diagram for visual simplicity. The

give_CurrentWordInterpretation() method is a static

method and, therefore, it can be called without the need to

instantiate an object. It is only necessary to use the class

name and the "::" operator followed by the name of the

method. The Triag class is the only class derived from the

Element class, because generated meshes consist only of

triangular elements. The give_CurrentWordInterpretation()

method is an specialist that has the ability to interpret input

file information related to a word previously added to the

dictionary. The Node, Segment, and Facet classes also

have the give_CurrentWordInterpretation() method to read

the data structure shown by Figure 3. The other methods of

the Element class, give_Centroid(), give_Jacobian(), and

give_Area() are virtual methods, which allow the

assignment of Element-type pointers to Triag-type objects.

http://www.ijaers.com/

Geraldo Creci International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 401

Thus, the code for calculating the centroid, the Jacobian

and the area of a triangular element are implemented in the

methods of the Triag class. It is possible to note two

associations existing in Figure 4: an association between

the Element class and the Node class; and, an association

between the Element class and the Centroid class. In the

first, a Node-type object is aggregated by reference to the

Element class, which implies that every Element-type

object will have a Node-type attribute, called

pCircumCircle, aggregated by reference. This

pCircumCircle attribute will have the coordinates of the

center of the circle that circumscribes a Triag element. In

the second, an object of the Centroid-type, theCentroid, is

added by value to the Element class. Figure 5 shows the

Segment, Facet, and Edge classes. Also, the List and

Container classes are presented. They are Template

classes, that is, they are parameterized. Note that the List

class depends on the Node, Segment, Facet, Edge and

Element classes, because it is necessary to create lists of

Node-type objects, Segment-type objects and so on.

Fig.5: Class diagram showing the modeling of Segment,

Facet and Edge classes.

 The Edge class was abstracted aiming at the

improvement of the element generation algorithm. With

the Edge class it is possible to know the geometric entities

in a certain region of interest more quickly and efficiently.

For example, as the Edge class relates to the Element class

and the Node class, it is possible to see that each Edge-

type object has two Element-type objects (pTriag1 and

pTriag2) and two Node-type objects (pNode1 and

pNode2). Thus, for a particular Edge-type object, it is

immediately known which are the two triangles of the

mesh that are part of it, and which are the two nodes that

define it. This is extremely beneficial from the processing

time saving point of view, because, it is not necessary to

search for a whole set of geometric entities, but only in a

particular region of interest. Figure 6 shows the GeoTrafo

and Mesh classes that are the most important classes of the

developed program. Again, to facilitate viewing of the

classes, the signatures of the methods were not displayed.

Fig.6: GeoTrafo and Mesh classes modeled using UML

notation.

Mesh Generator Flowchart

 The execution flowchart of the implemented mesh

generation program is presented in Figure 7. The mesh

http://www.ijaers.com/

Geraldo Creci International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 402

generation process begins with the input file reading. As

soon as this file is read, the computer has already stored in

memory all lists needed to generate the mesh on the

geometry. Three lists are created: a VertexList which

contains Vertex-type objects with information about the

geometry vertexes; an EdgeList which contains Edge-type

objects with information about the geometry edges; and a

FacetList which contains Face-type objects with

information about the planar faces of the geometry. The

MeshPar value is stored in a double type variable. The

mesh generation process starts from a loop in the

FacetList. For each face belonging to the FacetList, it is

applied a geometrical transformation matrix which will

move it to bi-dimensional space. After the face is in bi-

dimensional space, a loop in the EdgeList is performed,

which defines the current face. Each face owns as attribute

an EdgeList which contains all the segments of the face.

Each segment of the face owns as attribute a VertexList

which contains the Vertex-type objects that define the

segment. Initially, it is checked if the VertexList of the

current segment has only two Vertex. This means that the

segment has not been discretized. If the VertexList of the

segment contains more than two Vertex, it means that the

segment has already been discretized and should not be

discretized again. This verification is crucial because each

segment belongs to two faces. So, in order to respect the

continuity of the final mesh, the nodes on the edges of the

geometry are defined a priori and only once. Afterwards

the loop in the EdgeList of the Face object is finished, it is

called the method that generates the mesh over the face

using a grid of points. Good references to implement a bi-

dimensional mesh generator using the Delaunay

triangulation method, can be found in [12,17-19].

However, there are several approaches to generate meshes

with different types of elements [13]. An advancing front

approach, instead of generating a grid of points over a

region, is also very efficient for generating triangular

meshes [14]. This technique is particularly suitable for the

boundary element method because it starts the element

generation from the boundary data. An execution

flowchart using the advance front technique for mesh

generation, whose structure is similar in some aspects to

the proposed flowchart, can be found in [15]. As soon as

the mesh on the face is generated in a conformal

procedure, the inverse of the transformation matrix, used

to move the face to bidimensional space, is applied to send

the meshed face back to its original position in 3D space.

Then, another face of the geometry is selected and the

process goes on until all the faces have been analyzed. At

the end of the process, the program will have stored a

NodeList containing the nodes of the final mesh and an

ElementList containing the nodal connectivity. An output

file containing this information is written and used as input

file by the boundary element solver.

DISCRETIZED

EDGE?

READ FILE

LIST OF

EDGES
MESHPAR

LIST OF

VERTEXES

LIST OF

FACES

LOOP OF

FACES

GEOMETRICAL TRANSFORMATIONS

3D  2D

LOOP OF EDGES

Current Face

Current Segment

DISCRETIZATION
No

LOOP OF EDGES

MESH GENERATION OVER THE FACE

GEOMETRICAL TRANSFORMATIONS

2D  3D

LOOP OF

FACES

WRITE OUTPUT FILE

Input File

Final Mesh File

Fig.7: Execution flowchart of the developed mesh

generation program.

Geometrical Transformations

 The process of moving each planar face of the

geometry from three-dimensional space to bi-dimensional

 plane is obtained by using geometrical transformation

matrices [20]. In Figure 8 this process is illustrated step by

step. In Figure 8(a) it is presented an arbitrary planar face

in three-dimensional space constituted by linear segments.

This face can be a non-convex polygon and have holes in

its interior. First, it is detected the point of the face which

has the minimum -coordinate, in this case . Then it is

applied a translation matrix in order to move all the face

entities to the origin of the coordinate system, as presented

in Figure 8(b). The translation matrix is given by:

 (7)

http://www.ijaers.com/

Geraldo Creci International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 403

where is the point used for the face translation. The

subscript is the number of the point, represents the

cartesian components of the point, and, is the

Kronecker delta function. The vector is the face

normal vector calculated by the cross product between

and . As soon as the face is moved to the origin of the

coordinate reference system, it is necessary to apply a

geometrical transformation matrix in order to align

with -axis and with -axis. This is shown by Figure

8(c). The matrix is given by:

 (8)

where are the cartesian components of the vectors.

The vectors can be calculated by ,

 and . So, the transformation

matrix to be implemented is given by the product of

matrices with , as:

 (9)

Applying on a set of points , the face is moved to

plane as shown in Fig. 8(d) by the transformation:

 (10)

The inverse of the transformation matrix is used to

send the planar face back to its original position in three-

dimensional space.

IV. RESULTS AND DISCUSSIONS

Generated Meshes

 In order to show the capabilities of the developed mesh

generator, it is presented four meshes in arbitrary three-

dimensional geometries composed by planar faces, see

Figures 9 to 12. Since the developed mesh generator uses

Figure 8: Process of moving an arbitrary planar face

from 3D space to 2D plane.

the Delaunay triangulation method, the triangles’

minimum internal angles found in every mesh are

significantly high, being limited only by the minimum

angle of the drawing geometry. Therefore, it can be

noticed that all presented meshes shown good quality and

are suitable for numerical analysis using the three-

dimensional boundary element method or shell finite

element formulation. The meshes presented in this paper

are for illustration purposes and, thus, they have a very

small number of nodes and elements. However, the

MeshPar parameter can be easily adjusted as user’s needs

in order to generate more refined meshes, with much more

nodes and elements, according to computational hardware

availability.

Fig.9: Three-dimensional surface mesh with 1148 nodes

and 2292 elements.

http://www.ijaers.com/

Geraldo Creci International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 404

Fig.10: Three-dimensional surface mesh with 957 nodes

and 1910 elements.

Fig.11: Three-dimensional surface mesh with 1737 nodes

and 3474 elements.

Fig.12: Three-dimensional surface mesh with 1058 nodes

and 2116 elements.

Computational Simulations

 Some computational simulations were performed in

order to demonstrate practical applications of the

generated meshes. The first problem analyzed is a tub with

internal pressure. The Poisson ratio used is equal to 0.3

and the Young´s Modulus is 2600 units. The boundary

conditions applied are:

• -direction displacement restriction on the nodes

of the face parallel to plane;

• -direction displacement restriction on the nodes

of the face parallel to plane;

• -direction displacement restriction on the nodes

of the faces parallel to plane;

• 50 units of internal pressure applied on the

elements of the internal wall tub.

Figure 13 shows the displacement map for the studied

problem considering that the modeled mesh is generated

by the mesh generator presented by this work having 200

nodes and 396 triangular-linear elements; and, the solution

is calculated by a boundary element solver, ECon-3D,

which was developed prior to this research project. In a

similar way, the same problem was analyzed again

considering a modeled mesh generated by the Ansys

software having 212 nodes and 420 Shell63 triangular-

linear elements; the solution shown by Figure 14 was also

calculated by ECon-3D solver. It can be seen that the mesh

modeling strongly influences the results. The analytical

solution for this problem can be found in [7] by means of

comparison. A good agreement can be observed among all

the achieved results.

Fig.13: Displacement map for a mesh generated by the

mesh generator developed by this work; the solution was

carried out by Econ-3D boundary element solver.

http://www.ijaers.com/

Geraldo Creci International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 405

Fig.14: Displacement map for a mesh generated by the

Ansys software; the solution was carried out by Econ-3D

boundary element solver.

A second case study was performed considering the

structural support whose geometry is presented by Figure

15. To analyze this problem, a Poisson ratio of 0.21 and a

Young´s Modulus of 2900 units were adopted. The applied

boundary conditions applied are:

• - and - direction displacement restriction on the

nodes of the two holes;

• - direction displacement restriction on the nodes

of the two outer side faces containing the holes;

• 500 units of pressure applied to the elements at

the rod end.

Figure 15 shows the displacement map of the solution

considering the problem modeled with a mesh generated

by the Ansys software having 934 nodes and 1832 Shell63

elements. The respective solution of this problem was

calculated out by ECon-3D solver. Figure 16 shows

another displacement map of the solution considering the

problem modeled with a mesh generated by the mesh

generator developed by this work having 936 nodes and

1876 elements. The respective solution of this problem

was also performed by ECon-3D solver. A final analysis

was performed using the finite element method in the

Ansys software by using Solid45 elements. Figure 17

shows the mesh generated by the Ansys software with

1618 nodes and 6013 elements. The Solid45 element was

chosen because it has linear interpolation functions, thus

allowing a fairer comparison among the results. All three

analyzes showed very close results. This demonstrates that

the meshes generated by the mesh generator developed by

this work are of good quality and suitable for using in

numerical analysis.

Fig.15: Displacement map for a mesh generated by the

Ansys software; the solution was carried out by Econ-3D

boundary element solver.

Fig.16: Displacement map for a mesh generated by the

mesh generator developed by this work; the solution was

carried out by Econ-3D boundary element solver.

Fig.17: Displacement map for a mesh generated by the

Ansys software with Solid45 elements; the solution was

carried out by the Ansys solver.

http://www.ijaers.com/

Geraldo Creci International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 406

V. CONCLUSIONS

It was developed a triangular-linear surface mesh

generator for arbitrary three-dimensional geometries

composed by planar faces. As programming was done

using the object-oriented paradigm, it was possible to

construct a very clear and efficient program structure. In

addition, this structure is extremely flexible and allows for

faster and easier code expansion and enhancement.

Although the mesh generator developed by this work only

accepts geometries composed by planar faces, it can be

seen from the analysis of the presented results that a wide

variety of three-dimensional problems can be modeled

with considerable complexity. All the geometries analyzed

by the program lead to the generation of satisfactory

meshes which can be progressively refined according to

the MeshPar parameter and the processing capacity of the

computer hardware. The proposed algorithm makes use of

geometrical transformation matrices which allow the

development of a fast, robust and efficient program. The

program flowchart can be particularly useful for those who

already have a bi-dimensional mesh generator code

implemented and intend to extend its functionalities to

treat simple three-dimensional geometries composed by

planar faces. Some computational simulations have been

performed to show the quality of the meshes in problems

with specific boundary conditions. It could be observed

that the developed mesh generator provides triangular-

linear elements with good technical features for numerical

analysis considering the boundary element method or the

shell finite element formulation. Besides, the developed

program is an open source engineering program that can

be used for research purposes. Future improvements can

be done according to user’s needs.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the financial

support from CAPES, FAEP (1301/03) and FAPESP

(03/10832-1).

REFERENCES

[1] Sarti Leme A. D. et al. Finite Element Analysis to Verify the

Structural Integrity of an Aeronautical Gas Turbine Disc

Made from Inconel 713LC Superalloy. Advanced

Engineering Forum, v. 32, p. 15-26, 2019. Available in:

<https://doi.org/10.4028/www.scientific.net/AEF.32.15>

[2] Gao, Q. and Zhang, S. Moving mesh method for simulating

high-dimensional time dependent PDEs with fast

propagating shock waves. Engineering Analysis with

Boundary Elements, v. 103, p. 116-125, 2019. <Available

in: https://doi.org/10.1016/j.enganabound.2019.03.001>

[3] Creci Filho, G. Influência da dinâmica dos mancais na

resposta vibratória de uma turbina aeronáutica de 5-KN de

empuxo. São José dos Campos - SP: ITA, 2012. 307p. Tese

(Doutorado) - Available in:

<http://www.bdita.bibl.ita.br/tesesdigitais/lista_resumo.php?

num_tese=62130>

[4] Creci, G. et al. Rotordynamic Analysis of a 5-kN Thrust Gas

Turbine by Considering Bearing Dynamics. Journal of

Propulsion and Power, v. 27, n. 2, p. 330-336, 2011.

Available in: <https://doi.org/10.2514/1.B34104>

[5] Creci, G. et al. Influence of the Radial Clearance of a

Squeeze Film Damper on the Vibratory Behavior of a Single

Spool Gas Turbine Designed for Unmanned Aerial Vehicle

Applications. Shock and Vibration, v. 2017, p. 1-13, 2017.

Available in: <https://doi.org/10.1155/2017/4312943>

[6] Bastian M. and Li B. Q. An efficient automatic mesh

generator for quadrilateral elements implemented using

C++. Finite Elements in Analysis and Design, v. 39(9), p.

905-930, 2003. Available in:

<https://doi.org/10.1016/S0168-874X(02)00138-5>

[7] Kane J. H. Boundary Element Analysis in Engineering

Continuum Mechanics. New Jersey - Clarkson University:

Prentice-Hall; p. 676, 1994. Available in:

<https://books.google.com.br/books?isbn=0130869279>

[8] Brebia C. A. and Dominguez J. Boundary Elements: An

Introductory Course. Southampton - Boston: Computational

Mechanics Publications, p. 322, 1994. Available in:

<https://books.google.com.br/books?isbn=1853123498>

[9] Tsuboi, H. et. al. Adaptive triangular mesh generation for

boundary element method in three-dimensional electrostatic

problems. IEEE Transactions On Magnetics, v. 34(5), p.

3379-3382, 1998. Available in:

<https://doi.org/10.1109/20.717795>

[10] Phongthanapanich, S. and Dechaumphai, P. Adaptive

triangulation with object oriented programming for crack

propagation analysis. Finite Elements in Analysis and

Design, v. 40(13-14), p. 1753-1771, 2004. Available in:

<https://doi.org/10.1016/j.finel.2004.01.002>

[11] Tsuboi H. and Shimotsukasa T. Triangular mesh generation

using knowledge base for three-dimensional boundary

element method. IEEE Transactions on Magnetics, v. 26(2),

p. 799-802, 1990. Available in:

<https://doi.org/10.1109/20.106438>

[12] Du C. An algorithm for automatic Delaunay triangulation of

arbitrary planar domains. Advances in Engineering

Software, v. 27(1-2), p. 21-26, 1996. Available in:

<https://doi.org/10.1016/0965-9978(96)00004-X>

[13] Lee K.-Y., Kim I.-I., Cho D.-Y. and Kim T.-w. An

algorithm for automatic 2D quadrilateral mesh generation

with line constraints. Computer-Aided Design, v. 35(12), p.

1055-1068, 2003. Available in:

<https://doi.org/10.1016/S0010-4485(02)00145-8>

[14] Mavriplis D. J. An advancing front Delaunay triangulation

algorithm designed for robustness. Journal of Computational

Physics, v. 117(1), p. 90-101, 1995. Available in:

<https://doi.org/10.1006/jcph.1995.1047>

[15] El-Hamalawi A. A 2D combined advancing front-Delaunay

mesh generation scheme. Finite Elements in Analysis and

http://www.ijaers.com/

Geraldo Creci International Journal of Advanced Engineering Research and Science, 8(7)-2021

www.ijaers.com Page | 407

Design, v. 40(9-10), p. 967-989, 2004. Available in:

<https://doi.org/10.1016/j.finel.2003.04.001>

[16] Bastian M. and Li B. Q. An efficient automatic mesh

generator for quadrilateral elements implemented using

C++. Finite Elements in Analysis and Design, v. 39(9), p.

905-930, 2003. Available in:

<https://doi.org/10.1016/S0168-874X(02)00138-5>

[17] Ruppert J. A Delaunay refinement algorithm for quality 2-

dimensional mesh generation. Journal of Algorithms, v.

18(3), p. 548-585, 1995. Available in:

<https://doi.org/10.1006/jagm.1995.1021>

[18] Shewchuk J. R. Delaunay refinement algorithms for

triangular mesh generation. Computational Geometry-

Theory and Applications, v. 22(1-3), p. 21-74, 2002.

Available in: <https://doi.org/10.1016/S0925-

7721(01)00047-5>

[19] Secchi S. and Simoni L. An improved procedure for 2D

unstructured Delaunay mesh generation. Advances in

Engineering Software, v. 34(4), p. 217-234, 2003. Available

in: <https://doi.org/10.1016/S0965-9978(02)00131-X>

[20] Foley J. D. et al. Computer Graphics: Principles and

Practice in C. Addison-Wesley Publishing Company, 2nd.

ed., p. 1179, 1996. Available in:

https://books.google.com.br/books?isbn=0201848406

http://www.ijaers.com/
https://books.google.com.br/books?isbn=0201848406

