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Abstract— In this work we will show some important relations that includes the study of the golden ratio 

between two concentric circles, showing that there is a linear combination between the radii of the 

circumferences. We derive a constant K which corresponds to the perfect number representing the largest root of 

the golden ratio which is a function of the radii of two concentric circles 𝐶1and𝐶2, respectively. This relation 

makes it possible to find the values of the radii 𝑟1of 𝐶1and 𝑟2of 𝐶2 or vice versa. We will apply the results 

obtained in a problem related to the uranium and Neptune planets where we will use the known astronomical 

distances of said planets with respect to the sun to calculate the minimum and maximum distance comparing the 

percentage of the relative error with the known astronomical values in the scientific literature. Plot the graphs 

comparing the planetary distances in relation to the distances of Kepler and Titus as well as the margin of error. 

Keywords— Golden Ratio; Concentric Circumferences; Planetary Distances. 

 

I. INTRODUCTION 

The Golden Ratio is known as the numerical pattern that 

governs the balance of bodies along with the harmony of 

forms and motions in nature. From the mathematical 

understanding of this proportion it is possible to verify it 

in several phenomena of nature [1], [2]. 

Due to this characteristic, it is known that in several areas 

of knowledge, studies seek to unravel the mysteries that 

relate the golden ratio, also known as Fibonacci sequence 

[3], with the behavior of the most varied natural 

phenomena. Such studies generally have as purpose to 

analyze and to lead the equations characteristic of 

different phenomena, to an irrational number, which is 

denominated "gold number", represented by the letter Φ = 

(1 + √5) / 2 = 1.618034 ... [4], [5]. Therefore, given that 

nature presents itself obeying a certain harmony [6], and 

that the existence of golden proportion is intrinsic in 

nature in different forms or design [7]. 

Due to the importance and study directed in this area, the 

present article tries to show that there is a relation of the 

golden proportion with the planetary distances, starting 

from the development of equations originating from two 

concentric circles that are positioned from this proportion. 

Many texts focus on the golden ratio in the solar system 

and in the universe. There is the presence of this 

proportion in the diameters of the Earth and the Moon and 

they determine a triangle whose dimensions are related to 

the number Phi (root from the equation that represents a 

golden segment) and relations of that number with the 

distances of the planets with respect to the sun and that 

exponentially correlate with Phi. This number is also 

related to the rings of Saturn in close and dimensioned 

values at the golden ratio of the planet's diameter [7]. 

Due to this study, the present article seeks to show that it 

is possible to obtain planetary distances with small 

margins of errors by considering an equation relating the 

planetary rays to the sun, starting with the priore, to 

consider two concentric circles intersected by points 

whose distances are in a golden ratio. Based on this 

equation, they determine the smallest and largest 

distances of the planets Uranus and Neptune with small 

margins of error. We extend the equation to determine the 

distances of the other planets and compare them with the 

astronomical distances of Kepler and Titus-Bode and the 

error margins to detect to what extent they approach the 

known astronomical values [8]. 

Another fact that has been a reason for great admiration 

are the celestial bodies that fascinated the human mind 

since the earliest times [9], [10]. Due to scientific 

advances on the solar system, mathematical formalism on 

the movements of planets and stars as well as knowledge 

of their structures from astronomical observations and 
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mathematical calculations [11] has led man to an 

understanding beyond knowing about the gravitational 

forces, nature of orbits, velocities and periods of 

revolutions relative to the sun. 

Development on the solar system carried out in history by 

renowned scientists like Kepler, Nicolaus Copernicus, 

Galileo and Newton, led mankind in understanding the 

planetary system, with the sun in focus and the planets 

orbiting, elliptically, in planes and governed by 

gravitational forces. Another well-known scientist who 

sought to determine the planetary distances was Titus-

Bode who was able, by a very simple law, to determine 

planetary distances without, however, resorting to any 

equation such as Kepler's laws or the law of universal 

gravitation [12]. 

Titus-Bode who was director of the Berlin Observatory, 

which ended up defining the final sequence, which today 

is known as Titus-Bode Law. This law is based on a 

geometric progression of reason 2, from the second term: 

0, 1, 2, 4, 8, 16 and 32. Titus-Bode multiplied each of 

these terms by 3: Obtained: 0 , 3, 6, 12, 24, 48 and 96 and 

added 4 units each, yielding: 4, 7, 10, 16, 28, 52 and 100 

and finally dividing by 10, obtained the following result , 

0.4, 0.7, 1.0, 1.6, 2.8, 5.2 and 10.0 This sequence of 

numbers gave the distances of the planets to the sun [13] 

 

II. THE PERFECTNUMBER OF NATURE: 

THE DIVINEPROPORTION 

There is a number in nature that has been the 

subject of great research since antiquity and has always 

aroused the curiosity and fascination of mathematicians 

and scholars. This number that will be the target of this 

article corresponds to the number that we denominate of 

Φ = (1 + √5) / 2 = 1.618034 ... also denominated gold 

number. In human proportion, in works of classical 

architecture, Renaissance paintings and sculptures, and in 

nature there is a relation between the proportions of these 

elements and the number Φ, and for this and another 

reason it is considered as a magic number that organizes 

the universe into a same proportion known as the divine 

proportion. [14]. 

 

2.1 Definition of golden ratio 

Called "golden proportion" by Euclid (360-295 

BC) and "divine proportion" by Kepler, it was found that 

in the works of Leonardo da Vinci (1452-1519) such a 

proportion was adopted in important works. Thus, the 

golden ratio represents the most harmonious form of 

dividing into two parts of a segment so that from this 

division we derive the following quadratic equation. 

𝑘2 − 𝑘 − 1 = 0.                     (1) 

Mathematically, the golden ratio can be 

described as follows: Let a segment of line AB be divided 

by a point C between A and B, the golden ratio occurs 

when the relationship between the sequences is satisfied, 

AB/AC = AC/CB                                               (2) 

Geometrically, this relationship can be visualized as 

shown in Figure 1. 

 
Fig.1: Golden ratio of a line segment AB divided by a 

point C. 

 

Solving the proportion (1), we have to 

(AC)2  =  AB ∙ CB                                   (3) 

Establishing a metric relation where the follow-

up AB has a length of 1u.m. (1 unit of measure) (ie AB = 

1), we obtain that 〖(AC)〗 ^ 2 = CB, so since the total 

length of segment AB is 1u.m., then the sum of AC 

segments with CB must be equal to that unit. Therefore, 

one can write: 

AC + CB = 1.(4) 

Or, by replacing the term CB with (AC) 2, we 

have: 

 (AC) 2 + AC = 1.(5) 

Since this last expression corresponds to a quadratic 

equation, it is observed that by calculating its roots, we 

will have for the value of the segment AC, given by: 

𝐴𝐶 =
1±√5

2
                                                 (6) 

That is, 

𝐴𝐶′ =
1+√5

2
= Φ = 1,6180339 … =

𝐴𝐶

𝐶𝐵
                       (7) 

The number Φ = 

1.618033988749894848204568834365638 ... = AC / CB 

represents the irrational number, known as "gold number" 

in honor of Phidias (490-430a.C.), A phenomenal Greek 

sculptor who has always used the golden ratio in his 

construction. 

 

III. GOLDEN RATIO FOR  TWO 

CONCENTRIC CIRCLES 𝑪𝟏 𝒆 𝑪𝟐 

In this section we will use the golden ratio 

considering that point A (0,0) represents the center of two 

circles 𝐶1and 𝐶2with B (𝑥0, 𝑦0) ∈𝐶1 and C (x, y) ∈𝐶2, so 

that the points considered to be collinear. Let us consider 

that the segments ¯AB, ¯BC and ¯AC obeys a golden 

ratio. In this case, we must, 

|𝐴𝐵|
2

= |𝐴𝐶|. |𝐶𝐵|                                                        (8) 

Since B  (𝑥0, 𝑦0) belongs to the circumference C_1, we 

must 

𝑟1
2 = 𝑥0

2 + 𝑦0
2 
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From where we obtain that, 

|𝐴𝐵| = √𝑥0
2 + 𝑦0

2 = 𝑟1                                                  (9) 

Similarly, since point C (x, y) belongs to the 

circumference 𝐶2, it follows that 

𝑟2
2 = 𝑥2 + 𝑦2 → 

|𝐴𝐶| = √𝑥2 + 𝑦2 = 𝑟2                                              (10) 

We also have that the difference between the coordinates 

between the points C (x, y) and 𝐵(𝑥0, 𝑦0) can be 

represented by the following vector, 

𝐶𝐵 = (𝑥, 𝑦) − (𝑥0, 𝑦0) = (𝑥 − 𝑥0)𝑖 + (𝑦 − 𝑦0)𝑗      (11) 

Making the module, we get, 

𝐶𝐵 = √𝑥2 − 2𝑥𝑥0 + 𝑥0
2 + 𝑦2 − 2𝑦𝑦0 + 𝑦0

2 =

√𝑟2
2 + 𝑟1

2 − 2(𝑥𝑥0 + 𝑦𝑦0)             (12) 

Where do we consider 

𝑟2
2 = 𝑥2 + 𝑦2 e 𝑟1

2 = 𝑥0
2 + 𝑦0

2                                (13) 

Since the points A, B and C are collinear, it is worth the 

relation, 

|
𝑥 𝑦 1
𝑥0 𝑦0 1
0 0 1

| = 0 ↔ 𝑦 = 𝑥.
𝑦0

𝑥0
                                 (14) 

Taking (13) into (12), we obtain, 

𝐶𝐵 = √𝑟2
2 + 𝑟1

2 − 2. (𝑥𝑥0 +
𝑦0

2

𝑥0
𝑥) =

√𝑟2
2 + 𝑟1

2 −
2𝑥(𝑥0

2+𝑦0
2)

𝑥0
                           (15) 

𝐶𝐵 = √𝑟2
2 + 𝑟1

2 −
2𝑟1

2

𝑥0
𝑥                                                (16) 

Taking (12), (10) and (9) into (8), we obtain: 

𝑟1
2 = 𝑟2. √𝑟2

2 + 𝑟1
2 −

2𝑟1
2𝑥

𝑥0
                                          (17) 

Rising to the square (17), it comes that, 

𝑟1
4 = 𝑟2

2 (𝑟2
2 + 𝑟1

2 −
2𝑟1

2𝑥

𝑥0

) = 𝑟2
4 + 𝑟2

2𝑟1
2 −

2𝑟1
2𝑟2

2

𝑥0

. 𝑥 → 

2𝑟1
2𝑟2

2.
𝑥

𝑥0

= 𝑟2
4 − 𝑟1

4 + 𝑟2
2𝑟1

2 

→ 𝑥 = 𝑥0 (
𝑟2

4−𝑟1
4+𝑟2

2𝑟1
2

2𝑟2
2𝑟1

2 )                                                               

(18) 

Denoting, 

𝐾 =
𝑟2

4−𝑟1
4+𝑟1

2𝑟2
2

2𝑟1
2𝑟2

2                                                  (19) 

Taking (19) in (18), we obtain the point x, 

𝑥 = 𝐾𝑥0                                                                       (20) 

Using this expression in (14), we obtain, 

𝑦 = 𝑥.
𝑦0

𝑥0
→ 𝑦 = 𝐾. 𝑥0.

𝑦0

𝑥0
→ 𝑦 = 𝐾. 𝑦0                    (21) 

In this case, point C is represented by: 

𝐶 = (𝑥, 𝑦) = (𝐾𝑥0, 𝐾𝑦0) = 𝐾. (𝑥0, 𝑦0) → 

𝐶(𝑥, 𝑦) = 𝐾. 𝐵(𝑥0, 𝑦0)                                          (22) 

What shows that there is a linear combination between the 

points of 𝐶1and 𝐶2 

 

3.1   Values assigned to K. 

Let points A, B and C be 
. _____________________ . _____________________ .

𝐴(0,0)𝐵(𝑥0, 𝑦0)𝐶(𝐾𝑥0, 𝐾𝑦0)  

As it was verified the segments ¯AB, ¯BC and 

¯AC obey a golden ratio. Thus, we will determine the 

values of K. 

Soon, 

𝐴𝐵
2

= |𝐴𝐶||𝐵𝐶| → 𝑥0
2 + 𝑦0

2

= √𝐾2𝑥0
2 + 𝐾2𝑥0

2. √(𝐾 − 1)2𝑥0
2 + (𝐾 − 1)2 + 𝑦0

2 → 

𝑥0
2 + 𝑦0

2 = |𝐾|√𝑥0
2 + 𝑦0

2. |𝐾 − 1|√𝑥0
2 + 𝑦0

2 → 

𝑥0
2 + 𝑦0

2 = |𝐾||𝐾 − 1||𝑥0
2 + 𝑦0

2| → 

|𝐾||𝐾 − 1| =
𝑥0

2 + 𝑦0
2

𝑥0
2 + 𝑦0

2 = 1 ↔ |𝐾||𝐾 − 1| = 1 → 

𝐾(𝐾 − 1) − 1 = 0 → 𝐾2 − 𝐾 − 1 = 0                                

(23) 

 

The expression (23) represents the relation that leads to 

the condition predicted by the golden ratio. Therefore, 

𝐾′ =
1+√5

2
= 𝑎                                                  (24) 

𝐾′′ =
1−√5

2
= 𝑏                                                 (25) 

Since the golden ratio as the division of two 

distances, thus positive, does not make sense to discuss 

the second solution given by (25). In this case, let us 

consider K = (1 + √5) / 2 = a as the solution.Thus taking 

the relation given by (24) in (19), it follows that, 

𝑎 =
𝑟2

4−𝑟1
4+𝑟2

2𝑟1
2

2𝑟2
2𝑟1

2                              (26) 

The expression given by (26) may be useful for 

calculating concentric circumferential radii to C_1. This is 

what we will discuss in the next section. Another fact to 

be considered in this question is that the equation given 

by (26) has an important application when considering 

that the planets have circumferential orbits. In this case, it 

is possible to obtain the values of the planetary distances. 

Another fact to consider is that the equation given by (26) 

assumes a proportionality between the given radii. This 

proportionality factor is the root of the golden ratio. Thus, 

it becomes possible to obtain distances from the planets in 

a much easier way. 

 

IV. THE ROOTS OF GOLDENPROPORTION 

AND PLANETARYDISTANCES. 

Taking the relation given by (26). Thisis, 

𝑎 =
𝑟2

4 − 𝑟1
4 + 𝑟2

2𝑟1
2

2𝑟2
2𝑟1

2  

Explaining 𝑟2as a function of 𝑟1, we obtain 

that,(
𝑟2

𝑟1
)2 − (

𝑟1

𝑟2
)2 = 2𝑎 − 1                                         (27) 
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Denoted, 

𝛿 =
𝑟2

𝑟1
                                                                         (28) 

Taking (27) into (26), we obtain that, 

𝛿2 − 𝛿−2 = 2𝑎 − 1                                        (29) 

Or, 

𝛿4 − (2𝑎 − 1)𝛿2 − 1 = 0                           (30) 

Substituting (30) the first root of the golden ratio, 

a = 1.618034, we obtain that, 

𝛿4 − 2,2361𝛿2 − 1 = 0.                               (31) 

Extracting the root of this biquadrated equation, 

where only real solutions are considered, we obtain that, 

𝛿 =
𝑟2

𝑟1
 = 1,618034.                                      (32) 

Or, 

𝑟2 = 1,618034𝑟1.                                        (33) 

Substituting (26) for the second root of the golden ratio, a 

= -0.618034, we obtain that, 

𝛿4 + 2,2361𝛿2 − 1 = 0.                       (34) 

Soon 

𝑟2 = 0,618034𝑟1.                                          (35) 

The equation given by (33) will be useful to obtain the 

planetary distances. In this case, let us take as reference 

the average mercury distance to the sun. 

 

4.1 Applications to the Uranus and Neptune planets 

  4.1.1 Calculation of the minimum distance of Neptune. 

Using the equation given by (33) and 𝑟1 =

18,2766AU(Table 3)  

as the least distance from Neptune to the sun, we must, 

𝑟2 = 1,618034𝑟1 = 1,618034.18,2766 = 29,572161 

Soon,  

𝑟2 = 29,572161 

Looking still at table 3, we have to𝑟2 = 29,5711AU 

The relative error for this value will be,  

𝐸𝑟𝑟𝑜𝑟 =
𝐸𝑥𝑎𝑐𝑡𝑙𝑦 − 𝑉𝑎𝑙𝑜𝑟 𝐴𝑝𝑝𝑟𝑜𝑥.

𝐸𝑥𝑎𝑐𝑡𝑙𝑦
 

So, 

𝐸𝑟𝑟𝑜𝑟 =
29,5711 − 29,5722

29,5711
= 0,00003719 

What is equivalent to a 0,004% 

4.1.2 Calculation of the maximum distance of Neptune 

Using the equation given by (33) and being the value of 

the orbit of Neptune and considering that it supposes 𝑟1 is 

the maximum distance of the planet Uranus with𝑟1 =

20,0874AU (Table 3). 

𝑟2 = 1,618034𝑟1 = 1,618034.20,0874 = 

𝑟2 = 32,5020 

Looking at the table above, we must𝑟2 = 30,3163 

The relative error for this value will be, 

𝐸𝑟𝑟𝑜 =
𝐸𝑥𝑎𝑐𝑡𝑙𝑦 − 𝑉𝑎𝑙𝑜𝑟 𝐴𝑝𝑝𝑟𝑜𝑥.

𝐸𝑥𝑎𝑐𝑡𝑙𝑦
 

So, 

𝐸𝑟𝑟𝑜 =
30,3163 − 32,5020

30,3163
= 

This is equivalent to an error of 3.911%. 

Proceeding this way, we can obtain the following 

Table for the values of the rays given by expression (33) 

(Table 3).This table expresses the values of the minimum, 

average and maximum distances according to Kepler's 3rd 

law and then expresses the values of the distances using 

the equation 33 from the golden ratio. 

 

Table.1: Comparison of the maximum, average and maximum distances in relation to the golden ratio. 

Planets Minimumdistance 

(UA) 

AverageDistance 

(UA) 

Maximum 

Distance(UA) 

Minimumdistanceeq 

(33) 

AverageDistanceeq 

(33) 

Maximum 

Distanceeq 

(33)  

Mercury 0.3075 0.3871 0.4667 0.30751 0.38711 0.46671 

Venus 0.7184 0.7233 0.7282 0.4975 0.6263 0.7551 

Earth 0.9833 1.0000 1.0176 1.1624 1.1703 1.1782 

Mart 1.3814 1.5237 1.6660 1.5910 1.6180 1.6465 

Ceres1 2.5468 2.7663 2.9858 2.5351 2.4654 2.6956 

Jupiter 4.9510 5.2028 5.4546 4.1208 4.4760 4.8311 

Saturn 9.0075 9.5388 10.0701 8.0109 8.4183 8.8257 

Uranus 18.2766 19.1820 20.0874 14.5744 15.4341 16.2938 

Neptune 29.7993 30.0578 30.3163 29.5722 31.0371 32.5020 

Pluto 29.5711 39.4387 49.3063 48.2163 48.6345 49.0528 
 

The figures (Figure 2, Figure 3 and Figure 4) represent the graphsextractedfromórigin and the data of table 3 in 

ordertoevaluate and compare the planetarydistancesbetween Kepler distances and the results obtainedfromequation 33. 
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Fig.2: Comparison of Kepler's 1st Kepler's minimum planetary distances with the minimum distances given by Equation-33 

Source: Authors' Collection. 

 

 
Fig.3: Comparison of planetary distances Average of Kepler's 1st law with the mean distances given by Equation 33. 

Source: Authors' Collection. 

 

 
Fig.4: Comparison of Kepler's 1st maximal planetary distances with the maximum distances given by Equation-33. 

Source: Authors' Collection. 
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V. COMPARISONS OF PLANETARY DISTANCES, ACCORDING TO KEPLER, TITUS BODES AND THE 

GOLDEN RATIO 

Table 2: Calculation of planetary distances by Kepler, Titus Bodes and the golden ratio. 

Planetas AverageDistance 

Kepler (UA) 

Average Distance 

by Titus Bodes 

(UA) 

AverageDistance(Eq.33) 

(UA) 

Mercury 0.39 0.4 0.39 

Venus 0.72 0.7 0.63 

Earth 1.00 1.00 1.17 

Mart 1.52 1.6 1.69 

Ceres  2.77 2.8 2.46 

Jupiter 5.20 5.20 4.48 

Saturn 9.53 10.0 8.42 

Uranus 19.18 19.6 15.43 

Neptune 30.06 38.8 31.04 

Pluto 39.44 77.2 48.63 

 

 
Fig.5: Comparison between planetary distances according to Kepler, Titus Bodes and the golden ratio. 

Source: Authors' Collection. 

 

Table 3: Relative error margins of the planetary distances in relation to Titus Bodes, equations (33). 

Planets Average Distance by Titus 

Bodes (%) 

Average Distance per Golden 

Proportion 1 Eq (33) (%) 

Mercury 2.56 0.0 

Venus 2.78 12.5 

Earth 0.00 17.0 

Mart 5.26  11.18 

Ceres  1.08 11.19 

Jupiter 0.00 13.85 

Saturn 4.82 11.65 

Uranus 2.08 19.55 

Neptune 29.08 3.26 

Pluto 95.75 23.30 
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Fig.6: Values of relative errors (%) of the distances of the planets by the law of Titus Bodes and Equations (32) from a 

golden ratio. 

Source: Authors' Collection. 

 

VI. CONCLUSION 

As was verified for the planets, uranus and 

neptune that assume positions with segments that have a 

certain astronomical relation and that obeys a certain 

approximation with a golden proportion. The golden ratio 

has a certain rigor with Kepler's empirical laws and the 

law of Titus Bodes, presenting in some points a better 

description than that of Titus Bodes. It can be seen that 

the equation given by (32) very well describes the 

astronomical distances when comparing the error 

margins, as was observed for the uranus and neptune 

planets. This shows that there is a consistency about the 

relevance of the golden ratio to these and other planets. 

Another fact to consider in this article is that simple idea 

from geometric theories such as concentric circles was 

able to show impressive results of astronomical values, as 

positions of planets near and far in relation to the sun. 

For a better description and application of equation (32), 

graphs were plotted for comparison with Kepler and Titus 

Bode distances, taking into account comparisons of 

relative errors. Therefore, with this study, it can be 

considered that the golden ratio can be used to evaluate 

the positions of the planets in relation to the sun taking 

into account the margins of errors to show to what extent 

the theory has reliability. 

Another fact to consider is that simple ideas from 

geometric theories such as concentric circles, were able to 

show impressive results of astronomical values, as 

positions of planets near and far in relation to the Sun. 
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