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Abstract— This research formulates the water surface elevation 

equation for water waves, yielding periodic cnoidal and solitary wave 

profiles. The equation is derived by integrating the Kinematic Free 

Surface Boundary Condition with respect to time. The relationships 

among wave period, wave amplitude, and proportional wavelength 

facilitate the generation of both cnoidal and solitary wave profiles. In 

deep water, where wave dynamics are unaffected by the sea bottom, only 

cnoidal wave profiles are produced. In contrast, solitary profiles emerge 

through the shoaling-breaking process as waves approach shallower 

depths. 

 

I. INTRODUCTION 

Wilson (1963) classifies wave profiles into four distinct 

categories: sinusoidal, Stokes, cnoidal, and solitary profiles. 

Sinusoidal and Stokes profiles are typically observed in 

waves with small amplitudes. 

The theory of cnoidal waves was first developed by 

Korteweg and de Vries in 1895, based on observations of 

wave behavior in canals, thereby confirming their 

occurrence in natural environments. Cnoidal waves are 

characterized by a marked asymmetry between the crest and 

trough, with the wave surface predominantly elevated 

above the still-water level. The crest presents a steep 

gradient, while the trough descends below the still-water 

level more gradually. 

Solitary wave profiles, in contrast, are defined by the fact 

that the entire wave surface remains above the still-water 

level. This phenomenon was first identified by John Scott 

Russell in 1844 during laboratory experiments, with the 

theoretical foundation later provided by Joseph Boussinesq 

in 1871. Like cnoidal waves, solitary wave profiles have 

been observed in nature. 

Research on cnoidal waves is extensive, with Fenton (1979) 

contributing significantly to the development of cnoidal 

wave theory in the context of periodic waves. This research 

also extends the analysis of periodic cnoidal waves. 

Both cnoidal and solitary wave profiles are distinguished by 

their high crest elevations, with most of the wave profile 

remaining above the still-water level. In the case of solitary 

waves, the entire profile stays above this level. Due to their 

high crest elevations, these wave profiles play a critical role 

in the design and elevation of coastal structures, as they 

exert significant forces on such structures. Thus, identifying 

the appropriate wave profile at a planned construction site 

is essential. 

This research conducts a comprehensive analysis of wave 

profiles, including assessments in both deep and shallow 

water, specifically examining wave behavior before and 

after the breaking point. The water surface elevation 

equation used for analyzing wave profiles is derived by 

integrating the Kinematic Free Surface Boundary Condition 

equation. 

 

II. PRELIMINARY 

a. Axis System 

In this research, an axis system was used, where 𝑥 is the 

horizontal axis and 𝑧 is the vertical axis. 

b. Weighted Taylor Series 

The Weighted Taylor series is a truncated form of the 

Taylor series, limited to the first-order term. In this 

formulation, coefficients are introduced to the first 

derivative term, referred to as weighing coefficients. 
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Weighted Taylor series on function 𝑓(𝑥, 𝑡), 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛾𝑡,2𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛾𝑥𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

                                                                                 ……(1)      

Weighted Taylor series on function 𝑓(𝑥, 𝑧, 𝑡), 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛾𝑡,3𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+

                              𝛾𝑥𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ 𝛾𝑧𝛿𝑧

Ƌ𝑓

Ƌ𝑧
                   …………(2) 

                                                                        

𝛾𝑡,2, 𝛾𝑡,3, 𝛾𝑥 and 𝛾𝑧 are weighting coefficients. This research 

employed the equation 𝛾𝑡,2 = 1.999595  , 𝛾𝑡,3 = 3.009774 

, 𝛾𝑥 = 0.997583   and 𝛾𝑧 = 1.022911.  No significant gap 

is found between 𝛾𝑥 on function 𝑓(𝑥, 𝑡) and 𝛾𝑥 on function 

𝑓(𝑥, 𝑧, 𝑡). 

 

The weighting coefficients and the values of the weighting 

coefficients were measured based on the formula proposed 

by Hutahaean (2023). 

 

c. Kinematic free Surface Boundary Condition 

Using the weighted Taylor series, the Kinematic Free 

Surface Boundary Condition is 

𝑤𝜂 = 𝛾𝑡,2
Ƌ𝜂

Ƌ𝑡
+ 𝛾𝑥𝑢𝜂

Ƌ𝜂

Ƌ𝑥
                                    …….(3) 

Or 

𝛾𝑡,2
Ƌ𝜂

Ƌ𝑡
= 𝑤𝜂 − 𝛾𝑥𝑢𝜂

Ƌ𝜂

Ƌ𝑥
                                    …….(4) 

 𝜂(𝑥, 𝑡) represents the equation for the water surface 

elevation relative to the still water level, 𝑤𝜂 is the surface 

vertical water particle velocity, and 𝑢𝜂 is the surface 

horizontal water particle velocity. 

 

d. Velocity potential 

The velocity potential equation, which is the solution to the 

Laplace equation (Hutahaean, 2023) under the condition 

sin 𝑘𝑥𝑥 = cos 𝑘𝑥𝑥, is 

ɸ(𝑥, 𝑧, 𝑡) = 2 𝐺 cos 𝑘𝑥𝑥 cosh 𝑘𝑧(ℎ + 𝑧) sin 𝜎𝑡 

                                                                       ……..(5) 

ɸ(𝑥, 𝑧, 𝑡) is velocity potential. 

𝜎 =
2𝜋

𝑇
 is angular frequency and 𝑇 is wave period. 

𝑘𝑥 =
𝑘

√𝛾𝑥
 is wave number on horizontal axis 

𝑘𝑧 =
𝑘

√𝛾𝑧
 is wave number of the vertical axis 

𝑘𝑥 ≈ 𝑘𝑧 ≈ 𝑘, 𝑘 is wave number. Although the difference 

between 𝑘𝑥 and  𝑘𝑧 is very small, in this research they are 

still distinguished to maintain calculation accuracy. 

𝐺 is the wave constant, which, with dimensions of 

𝑚. 𝑚/𝑠𝑒𝑐, can be referred to as the wave energy 

transmission rate. 

By integrating the kinematic free surface boundary 

condition, Hutahaean (2024a) obtained the wave amplitude 

function as: 

𝐴 =
2𝐺𝑘

𝛾𝑡,2𝜎
cosh 𝜃𝜋 (

tanh 𝜃𝜋

√𝛾𝑧
−

𝑘𝐴

2
)                     ……(6) 

𝜃 is the deep water coefficient where tanh 𝜃𝜋 ≈ 1. In this 

research, 𝜃 = 3.0 is used to reduce wave height near the 

coastline. In previous studies, 𝜃 = 1.94 was used to obtain 
𝐻𝑏

ℎ𝑏
= 0.78, where 𝐻𝑏  is the breaking wave height and ℎ𝑏 is 

the breaking water depth. With this 𝜃 value, a large wave 

height is observed near and at the coastline, where for a 

wave with a period of 8 seconds, a wave height of 2.0 meters 

can occur at a water depth of 1.0 meter. 

 

III. WATER SURFACE ELEVATION 

EQUATION 

The equation for water surface elevation is derived from the 

integration of the Kinematic Free Surface Boundary 

Condition with respect to time, utilizing the complete 

velocity potential.  

ɸ(𝑥, 𝑧, 𝑡) = 𝐺 cosh 𝑘𝑧(ℎ + 𝑧) (cos 𝑘𝑥 +

                        sin 𝑘𝑥𝑥) sin 𝜎𝑡                           …….(7) 

This equation is substituted into the Kinematic Free Surface 

Boundary Condition and integrated with respect to time 𝑡. 

𝜂(𝑥, 𝑡) =
𝐺𝑘𝑧

𝛾𝑡,2𝜎
sinh  𝑘𝑧(ℎ + 𝜂) (cos 𝑘𝑥𝑥 + sin 𝑘𝑥𝑥) cos 𝜎𝑡 

              +
𝛾𝑥𝐺 𝑘𝑥

𝛾𝑡,2𝜎
cosh  𝑘𝑧(ℎ + 𝜂)

Ƌ𝜂

Ƌ𝑥
(−sin 𝑘𝑥𝑥 +

                   cos 𝑘𝑥𝑥) cos 𝜎𝑡                              …….(8) 

This equation is highly implicit and nonlinear, where the 

right-hand side contains 𝜂(𝑥, 𝑡) as a hyperbolic function. 

The calculations are performed in a stepwise manner as 

follows. 

𝜂(𝑥, 𝑡) = 𝐴(cos 𝑘𝑥𝑥 + sin 𝑘𝑥𝑥) cos 𝜎𝑡 

Ƌ𝜂

Ƌ𝑥
= 𝑘𝑥(−sin 𝑘𝑥𝑥 + cos 𝑘𝑥𝑥) cos 𝜎𝑡 

𝜂(𝑥, 𝑡) =
𝐺𝑘𝑧

𝛾𝑡,2𝜎
sinh  𝑘𝑧(ℎ + 𝜂) (cos 𝑘𝑥𝑥 + sin 𝑘𝑥𝑥) cos 𝜎𝑡 

              +
𝛾𝑥𝐺 𝑘𝑥

𝛾𝑡,2𝜎
cosh  𝑘𝑧(ℎ + 𝜂)

Ƌ𝜂

Ƌ𝑥
(−sin 𝑘𝑥𝑥 +

                   cos 𝑘𝑥𝑥) cos 𝜎𝑡                               …..(9) 

The wave profile is constructed at a specific value of cos 𝜎𝑡 

using cos 𝜎𝑡 = 1, over one wavelength, which is defined for 

𝜋 ≤ 𝑘𝑥𝑥 ≤ 3.0𝜋. 

 

IV. WAVE NUMBER OF DEEP WATER 

In this section, the wave number equation for deep water is 

formulated using the water surface elevation equation, to 

obtain a wave number that is consistent with the water 

surface elevation equation. 

http://www.ijaers.com/
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The maximum water surface elevation is achieved when 
Ƌ𝜂

Ƌ𝑥
= 0. Under this condition, the second term in (9) is zero: 

𝜂𝑚𝑎𝑥 =
𝐺𝑘𝑧

𝛾𝑡,2𝜎
sinh  𝑘𝑧(ℎ + 𝜂) (cos 𝑘𝑥𝑥 + sin 𝑘𝑥𝑥) cos 𝜎𝑡 

The maximum water surface elevation relative to its 

stationary point or still water level is equal to the wave 

amplitude: 

𝐴 =
𝐺𝑘𝑧

𝛾𝑡,2𝜎
sinh  𝑘𝑧(ℎ + 𝐴) (cos 𝑘𝑥𝑥 + sin 𝑘𝑥𝑥) cos 𝜎𝑡 

The maximum elevation occurs when cos 𝜎𝑡 = 1. 

𝐴 =
𝐺𝑘𝑧

𝛾𝑡,2𝜎
sinh  𝑘𝑧(ℎ + 𝐴) (cos 𝑘𝑥𝑥 + sin 𝑘𝑥𝑥) 

In (9), the second term is zero if cos 𝑘𝑥 = sin 𝑘𝑥. 

Therefore, this condition provides an effect equivalent to  
Ƌ𝜂

Ƌ𝑥
= 0. Under the condition of cos 𝑘𝑥 = sin 𝑘𝑥, 

𝐴 =
2𝐺𝑘𝑧

𝛾𝑡,2𝜎
sinh  𝑘𝑧(ℎ + 𝐴) cos 𝑘𝑥𝑥 

If cos 𝑘𝑥 = sin 𝑘𝑥, the value of cos 𝑘𝑥 =
1

√2
  

𝐴 =
√2𝐺𝑘𝑧

𝛾𝑡,2𝜎
sinh  𝑘𝑧(ℎ + 𝐴) 

In the deep water, 𝑘𝑧(ℎ + 𝐴) = 𝑘𝑧ℎ (1 +
𝐴

ℎ
) ≈ 𝑘𝑧ℎ (1 +

𝐴

2ℎ
) ≈ 𝜃𝜋, where tanh 𝜃𝜋 ≈ 1.0, 

𝐴 =
√2𝐺𝑘𝑧

𝛾𝑡,2𝜎
sinh  𝜃𝜋 

Since 𝑘𝑧 =
𝑘

√𝛾𝑧
, 

𝐴 =
√2𝐺𝑘

𝛾𝑡,2𝜎√𝛾𝑧
sinh  𝜃𝜋                                         …..(10) 

The wave amplitude in this equation must be equal to the 

wave amplitude in (6). 

√2𝐺𝑘

𝛾𝑡,2𝜎√𝛾𝑧

sinh  𝜃𝜋 =
2𝐺𝑘

𝛾𝑡,2𝜎
cosh 𝜃𝜋 (

tanh 𝜃𝜋

√𝛾𝑧

−
𝑘𝐴

2
) 

 

tanh  𝜃𝜋

√𝛾𝑧

= √2 (
tanh 𝜃𝜋

√𝛾𝑧

−
𝑘𝐴

2
) 

 

𝑘0 = (2 − √2)
tanh 𝜃𝜋

𝐴0√𝛾𝑧
                                     …….(11) 

The equation provided represents the wave number 

equation applicable in deep water, with the index 0 

indicating that the wave amplitude pertains to deep water 

conditions.  

  

While Equation (11) is derived from Equation (9), it yields 

a water surface elevation characterized by 𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛 <

𝐻. To satisfy the condition 𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑛 = 𝐻, thus equation 

(11) must be adjusted by introducing a coefficient given by: 

𝑘0 = 1.142𝑥(2 − √2)
tanh 𝜃𝜋

𝐴0√𝛾𝑧
                       ……(12) 

                                           

 The coefficient 1.1421 is notably close to 1.0, indicating 

that Equation (11) aligns well with  (9). 

 

V. WAVE PROFILE IN DEEP WATER AT 

MAXIMUM WAVE HEIGHT 

This section focuses on the analysis of wave profiles at 

maximum wave height during a specific wave period. The 

maximum wave height in deep water is defined by the 

Wiegel equation (1949-1964): 

𝐻0 =
𝑔𝑇2

15.62                                                      …….(13) 

Or Hutahaean (2024a), 

𝐻0 = (
tanh 𝜃𝜋

√𝛾𝑧
)

2 𝑔

 𝜎2 𝛾𝑡,2 𝛾𝑡,3
                           ……...(14) 

Both formulations yield the same maximum wave height. 

 

The calculated values of 𝐻0 and 𝐿0 across various wave 

periods, along with their wave profile characteristics 

including critical wave steepness and wave profile criteria 

based on Wilson (1963) are presented in Table 1. 

Table 1: Wave Profile Characteristics in Deep Water 

𝑇 

(sec) 

𝐻0 

(m) 

𝐿0 

(m) 

𝐻0

𝐿0

 
𝜂𝑚𝑎𝑥

𝐻0

 

2 0.161 0.767 0.211 0.864 

3 0.363 1.725 0.211 0.864 

4 0.646 3.067 0.211 0.864 

5 1.009 4.793 0.211 0.864 

6 1.453 6.902 0.211 0.864 

7 1.978 9.394 0.211 0.864 

8 2.583 12.27 0.211 0.864 

9 3.269 15.529 0.211 0.864 

10 4.036 19.172 0.211 0.864 

11 4.884 23.198 0.211 0.864 

12 5.812 27.607 0.211 0.864 

13 6.822 32.4 0.211 0.864 

14 7.911 37.576 0.211 0.864 

15 9.082 43.136 0.211 0.864 
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16 10.333 49.079 0.211 0.864 

17 11.665 55.406 0.211 0.864 

18 13.078 62.116 0.211 0.864 

In Table (1), 
𝐻0

𝐿0
  represents the wave steepness. Given that  

𝐻0 is defined as the maximum wave height, the resulting  
𝐻0

𝐿0
 

reflects the critical wave steepness.  Research by Toffoli et 

al. (2010) established a critical wave steepness threshold of 

0.170, recommending a value of 0.200. The critical wave 

steepness derived from this research is 
𝐻0

𝐿0
= 0.211, 

indicating that the wavelength obtained aligns closely with 

the findings of Toffoli et al. 

𝜂𝑚𝑎𝑥

𝐻0
 represents the wave profile criteria as defined by 

Wilson (1963). This criterion is detailed in Table 2 and 

illustrated in Fig 1. The value 
𝜂𝑚𝑎𝑥

𝐻0
 is 0.864, which, 

according to the Wilson criterion in Table 2, classifies the 

wave profile as a cnoidal profile. 

Table 2: Water wave profile criteria (Wilson (1963))) 

Wave type 𝜂𝑚𝑎𝑥

𝐻
 

Airy/sinusoidal waves < 0.505 

Stoke’s waves 0.505 − 0.635 

Cnoidal waves 0.635 − 1 

Solitary waves = 1 

 

 

Fig.1: Wave profile for Wilson (1963) criteria. 

 

In Figure 2, the wave profile is illustrated for a wave period 

of 𝑇 = 8.0 sec with a wave height of 𝐻0 = 2.583 𝑚. The 

resulting wave profile is identified as a cnoidal profile. 

Waves with wave period 𝑇 = 2.0 𝑠𝑒𝑐. and wave height 

𝐻0 = 0.161 𝑚. are also cnoidal (Fig(3)).  

 

Fig.2: Wave profile, wave period 𝑇 = 8.0, 𝐻0 = 2.583 𝑚, 
𝜂𝑚𝑎𝑥

𝐻0
= 0.864 𝑚. 

 

  

Fig.3: Wave profile, wave period 𝑇 = 2.0, 𝐻0 = 0.161 𝑚, 
𝜂𝑚𝑎𝑥

𝐻0
= 0.864. 

   

The findings of this section indicate that the wave profile 

generated by the system of equations specifically, the 

maximum wave height equation, the wave number 

equation, and the water surface elevation equation in deep 

water yields a cnoidal wave profile. 

 

VI. SHOALING-BREAKING MODEL 

The shoaling-breaking model employed in this research is 

based on the framework developed by Hutahaean (2023). 

As waves propagate from point 𝑥 with water depth ℎ𝑥 

towards 𝑥 + 𝛿𝑥, at small 𝛿𝑥, with water depth ℎ𝑥+𝛿𝑥 show 

changes in the parameters as follows.  

Ƌ𝑘

Ƌ𝑥
= −

4𝑘

(4ℎ+3𝐴)

𝑑ℎ

𝑑𝑥
                                           ……(15) 

-0.5

0

0.5

1

1.5

2

2.5

7 9 11 13 15 17 19 21

η
(m

)

x (m)

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0 0.5 1 1.5 2

η
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)
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𝑘𝑥+𝛿𝑥 = 𝑘𝑥 + 𝛿𝑥
Ƌ𝑘

Ƌ𝑥
 

Ƌ𝐴

Ƌ𝑥
=

𝐺

𝜎𝛾𝑡,2

Ƌ𝑘

Ƌ𝑥
(

1

√𝛾𝑧
−

𝑘𝐴

2
) cosh(𝜃𝜋)                        …….(16) 

 𝐴𝑥+𝛿𝑥 = 𝐴𝑥 + 𝛿𝑥
Ƌ𝐴

Ƌ𝑥
 

𝐺𝑥+𝛿𝑥 = 𝑒ln 𝐺𝑥−
1

2
(ln 𝑘𝑥+𝛿𝑥−ln 𝑘𝑥)

                            ……..(17) 

a. Results of Shoaling-Breaking Analysis with Wave Profile 

In this section, a shoaling-breaking analysis is conducted on 

waves characterized by a wave period of 𝑇 = 8.0 𝑠𝑒𝑐., 

wave height 𝐻0 = 2.583𝑚., deep water depth ℎ0 = 17.759 

m.  The findings from this analysis are illustrated in Figure 

4, where the breaking wave height is 𝐻𝑏 = 3.298 m at a 

breaker depth ℎ𝑏 = 6.921 𝑚, 
𝐻𝑏

ℎ𝑏
= 0.477. In this research, 

the traditional criterion of  
𝐻𝑏

ℎ𝑏
= 0.78, has been set aside, as 

adherence to this standard resulted in excessively large 

wave heights near the coastline. If the criterion of 
𝐻𝑏

ℎ𝑏
= 0.78 

d were to be utilized, it would necessitate a deep water 

coefficient 𝜃 = 1.94. However, to ensure that the wave 

height near the coastline remains manageable, a deep water 

coefficient of 𝜃 = 3.0 was employed in this analysis. 

 

It is important to note that the breaking wave height 

observed in this research differs from findings in previous 

research, such as Hutahaean (2024b). This discrepancy can 

be attributed to the longer wavelength in deep water present 

in this research, which consequently leads to an increase in 

wave energy. 

 

 

Fig.4: The results of shoaling-breaking analysis 

 

Subsequently, a wave profile analysis was carried out in 

shallow water at a water depth. ℎ, 12.0 m, 6.921  m 

(breaking point),  3.0 m ,1.0 m and 0.50 m . 

 

Fig.5: Wave profile at ℎ = 12.0 𝑚,  
𝜂𝑚𝑎𝑥

𝐻
= 0.959, 𝐻 =

3.016 𝑚 

 

 

Fig.6: Wave profile at ℎ = 6.921 𝑚 (breaker depth), 
𝜂𝑚𝑎𝑥

𝐻
= 1.0, 𝐻 = 3.298 𝑚 

 

 

Fig.7: Wave profile at ℎ = 3.0 𝑚, 
𝜂𝑚𝑎𝑥

𝐻
= 1.0, 𝐻 =

2.560 𝑚 
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Fig.8: Wave profile at ℎ = 1.0 𝑚, 
𝜂𝑚𝑎𝑥

𝐻
= 1.00, 𝐻 =

0.895 𝑚 

 

 

Fig.9: Wave profile at ℎ = 0.5 𝑚, 
𝜂𝑚𝑎𝑥

𝐻
= 1.00, 𝐻 =

0.475 𝑚 

 

Table 3: Wave Profile Summary 

ℎ 

(m) 

𝐻 

(m) 

𝜂𝑚𝑎𝑥

𝐻
 Profile 

17.87 2.583 0.864 Cnoidal 

12.0 3.016 0.959 Cnoidal  

6.921 3.298 1.0 Solitary 

3.0 2.560 1.0 Solitary 

1.0 0.895 1.0 Solitary 

0.5 0.475 1.0 Solitary 

 

In deep water, as illustrated in Figure 2, the wave profile is 

characterized as cnoidal, with a ratio of 
𝜂𝑚𝑎𝑥

𝐻0
= 0.864. As 

the wave progresses towards the coastline, this cnoidal 

profile undergoes significant evolution, primarily through 

an increase in the value of 
𝜂𝑚𝑎𝑥

𝐻
   as presented in Table 2. 

This transformation ultimately leads to the formation of a 

solitary wave profile. At the breaking point, where 
𝜂𝑚𝑎𝑥

𝐻
=

0.996 the wave can be classified distinctly as a solitary 

profile. 

In a time series model, Hutahaean (2024b) corroborated 

these findings, demonstrating that the cnoidal profile 

observed in deep water evolves into a solitary profile as it 

transitions into shallower waters.  

 

VII. CONCLUSION 

The first conclusion drawn from this research is that the 

system of equations, which includes the dispersion 

equation, wave height equation, and surface elevation 

equation, generates both cnoidal and solitary wave profiles. 

These profiles are characteristic of short waves commonly 

observed in nature. 

As cnoidal waves propagate from deep to shallow water, 

they undergo a profile evolution, transitioning from a 

cnoidal to a solitary wave form. This evolution is marked 

by an increase in the parameters governing the wave profile. 

In shallow water, wave profiles are predominantly cnoidal 

and/or solitary. For structural design in shallow water, it is 

recommended to use the solitary wave profile for both 

elevation planning and wave force calculations. In contrast, 

for deep-water conditions, the cnoidal profile can be applied 

when the Wilson criterion exceeds 0.8. However, for 

enhanced safety, it is advisable to use the solitary wave 

profile, regardless of the water depth, to account for 

potential extreme wave forces. 
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