
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-7, Jul- 2019]

https://dx.doi.org/10.22161/ijaers.6753 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 466

On the Effectiveness of Interactive Detection of

Code Anomalies: An Empirical Assessment
Danyllo Albuquerque1, Daniel Abella Mendonça de Souza1, Wesley Gonzaga

Alves1, Ted Igor Soares Medeiros1, Marcio Ferreira Pereira1, Roberto Felício

de Oliveira2, Wagner Cândido da Silva2

1Department of Information System, UNIFACISA, Brazil

Email: {danyllo.albuquerque, daniel.abella, wesley.alves, ted.medeiros, marcio.pereira}@maisunifacisa.com.br
2Department of Information System, UEG, Brazil

Email: {prof.roberto.posse, wagner.candido}@ueg.edu.br

Abstract—Background: Detection of code anomalies should be performed as early as possible in order to

effectively reveal refactoring opportunities in due time. Refactoring aims at improving software maintainability,

but their late application is counter-productive or even prohibitive. Detection of code anomalies is traditionally

supported by non-interactive detection (NID) techniques, which encourage developers to reveal anomalies in

later revisions or versions of a program. The reason is that this technique does not support progressive

interaction of developers with anomalous code. In addition, it reveals anomalies in the entire source code upon

an eventual developer request. More recently, the notion of interactive detecti on (ID) has emerged to address

NID’s limitations. This technique reveals anomalies when code fragments are still being edited and without an

explicit developer request, thereby encouraging early anomaly detection. Problem Statement: Recent studies

suggest the use of NID might lead to: (i) a low number of correctly identified anomalies, and (ii) ineffective

refactoring actions. Although ID seems promising, there is no knowledge about its impact on anomaly detection

and refactoring actions. Goal: Evaluate the effectiveness of an ID technique on early anomaly detection. In

addition, we analyze the aid of an ID technique in performing effective refactoring actions. Method: We

conducted a controlled experiment with 14 subjects that underwent tasks related to ano maly detection and

judgments of required refactoring actions. Results: Our study reveals the use of ID improves anomaly detection

as developers tend to early identify more anomalies when compared to the use of NID. Conclusions: Although

ID contributes to detect more anomalies than NID, the former may induce to ineffective refactoring actions.

Keywords—Code Anomalies, Interactive Detection, Software Refactoring.

I. INTRODUCTION

Code anomalies are structures in a program that often

indicate the presence of deeper maintainability problems

[1]. Code anomalies should be early detected, during the

ongoing implementation of a program rather than in later

maintenance tasks. Early detection of anomalies is likely

to lead to effective refactoring actions [2]. Refactoring is

a behavior-preserving change in the program structure

intended to remove code anomalies and improve software

maintainability [1]. However, the early detection of code

anomalies is not a trivial task and many factors can hinder

the realization of this task. Among those factors, we

highlight that developers may not be able to early identify

code anomalies due to their lack of experience on this

task [3]. In addition, conventional techniques may offer

limited support or discourage early detection of code

anomalies [3].

Several techniques for (semi-) automated detection of

code anomalies have been proposed in the literature (e.g.

[3][5][6][7]). Most of these existing techniques are

characterized as supporting non-interactive detection

(NID) [3][6]. NID techniques reveal a global list of code

anomalies once the source code is completed and

compiled. Moreover, the use of NID demands an explicit

and eventual request of the developer so that the full

source code analysis is triggered. More importantly, NID

techniques do not offer means for developers interact with

the anomalous code elements while they are producing,

editing or inspecting their program statements. All these

characteristics of NID techniques encourage late detection

of code anomalies.

On the other hand, the notion of interactive detection

(ID) has been recently proposed [6]. An ID technique is

intended to reveal code anomalies in program fragments

https://dx.doi.org/10.22161/ijaers.6753
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-7, Jul- 2019]

https://dx.doi.org/10.22161/ijaers.6753 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 467

without an explicit developer request, thereby

encouraging early detection of code anomalies. In

contrast to NID, ID provides support for developers

interacting with anomalous code as they edit or browse

program statements. Unfortunately, there is little

empirical knowledge about the effectiveness of

interactive detection of code anomalies [6].

Most of the empirical studies on anomaly detection

strictly focuses on the evaluation of NID [9][10][11][12].

These studies pointed out NID techniques induce to a low

number of correctly identified code anomalies. Other

studies also suggested NID techniques induce to the

realization of ineffective refactoring actions

[21][22].Therefore, the expectation is that ID techniques

can better promote early identification of code anomalies

and, as a consequence, effective refactoring actions. Even

though organizations and developers might want to

consider the adoption of ID techniques, there is no

evidence in the literature about its effectiveness on

anomaly detection. In other words, there is still a lack of

empirical knowledge about the use of ID.

Therefore, our goal is to address the following

research question: “Can the use of ID improve the

effectiveness on anomaly detection and refactoring

actions?”. For doing so, we conducted a controlled

experiment involving 14 subjects with different working

experience and technical knowledge. Subjects performed

tasks related to anomaly detection and judgments of

refactoring with support of both ID and NID techniques.

In order to evaluate the effectiveness of both techniques,

we used two measures: precision and recall. We select

these two measures because they have been widely

adopted in other effectiveness studies involving code

anomaly detection [13][14][15]. Our comparative analysis

allowed us to evaluate whether some ID characteristics

could bring benefits or drawbacks for effective anomaly

detection.

The experimental results revealed the use of ID has

achieved better effectiveness on code anomaly detection

when compared to NID techniques. Developers identified

a much higher number of code anomalies when using the

ID. On the other hand, we have observed the use of ID

might lead to a high number of false positives and,

consequently, developers can be induced to perform

ineffective refactoring actions.

The remainder of this paper is organized as follows.

Section 2 introduces basic concepts required to

understand the analysis performed in our study. Study

settings are described in Section 3 while the results

associated with interactive detection of code anomalies

are discussed in Section 4. In Section 5, we present the

threats to validity observed in our study. Related work is

discussed in Section 6. Finally, we present our

conclusions and point out directions for future work in

Section 7.

II. BACKGROUND

This section presents essential concepts related to

code anomalies, code refactoring and support for anomaly

detection.

2.1 Code Anomalies and Refactoring

Code anomalies are symptoms on the program

structure that may indicate the presence of deeper

maintainability design problems [1]. They suggest where

perfective maintenance is required in the source code [1].

Several code anomalies have been proposed and

cataloged by several researchers, including Fowler [1],

van Emden and Moonen [13], and Arevalo [16]. Typical

examples of code anomalies are Feature Envy and Long

Method [1].

Early detection of code anomalies is the only

possibility of promoting the longevity of a software

system. Early detection is the ability of identifying

opportunities for refactoring [1][19][20] as soon as

anomalies are introduced in the source code by

programmers. Longer the code anomalies remain in the

source, harder it becomes to refactor out these anomalies

from a program. Refactoring [1][17] is defined as

behavior-preserving change made in structure of a

program with the aim of improving software

maintainability. Fowler [1] has identified more than 70

different types of refactoring, which range from local

changes in a specific code element (as the Extract Local

Variable refactoring) to a global change (as the Extract

Class refactoring).

The effectiveness of refactoring actions is largely

dependent on the effectiveness of detecting the code

anomalies. Preliminary studies [21][22] have exposed

negative consequences on code quality whenever

ineffective and late refactoring actions are performed.

Thus, developers need to identify anomaly instances more

effectively and opportunely so that refactoring actions can

be performed. In contrast, if developers miss the

occurrences of anomaly instances, developers can

perform ineffective refactoring actions in the source code.

2.2 Support to Detection of Code Anomalies

Usually, developers use (semi)automated techniques

to guide their effort on anomaly detection [18][23]. These

techniques are basically comprised of two components

[3][7]: (i) a mechanism for anomaly detection; and (ii) a

user interface responsible for displaying detected anomaly

instances, i.e. occurrences of code anomalies identified by

https://dx.doi.org/10.22161/ijaers.6753
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-7, Jul- 2019]

https://dx.doi.org/10.22161/ijaers.6753 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 468

the detection mechanism. The detection mechanism may

allow developers to choose or define algorithms for

anomaly detection. Developers can choose some metrics

and thresholds to compose their own detection algorithms

[5]. Based on developer’s interaction with the

aforementioned components and the anomalous code

elements, anomaly detection can be classified according

to two different techniques, as shown in Figure 1.

Fig.1: Comparison between techniques for anomaly

detection.

Interactive detection (ID) is a technique that supports

developer’s interaction with anomalous code elements

(Figure 1). The ID techniques reveal anomaly instances in

code fragments without an explicit request from the

developer. Thus, the ID techniques constantly work on

detecting anomaly instances in code fragments being

manipulated by the developer. Thereby, a developer using

ID techniques can early identify instances of code

anomalies. Once developers do not directly interact with

the mechanism for anomaly detection, they are able to

perform other programming activities. In summary,

developers are able to analyze, modify and implement the

source code while they interact with the anomalous code

elements [6].

Non-interactive detection (NID) is a technique that

does not support developer’s interaction with anomalous

code elements (Figure 1). The NID techniques reveal

anomaly instances in the entire source code upon an

explicit request from the developer. The mechanism for

anomaly detection receives the request, and then, it

detects anomaly instances in the entire source code.

Thereby, developers using NID techniques identify

anomaly instances only later (e.g., when code is already

implemented). Once developers directly interact with the

mechanism of anomaly detection, they are not able to

concurrently perform other programming activities in the

source code [6].

We analyze the ID technique through Stench Blossom

[3]. This tool provides the programmer with three

different views, which progressively offer information

about the anomaly instances in the code fragment being

visualized or edited. Initially, the developer interacts with

the Ambient View (Figure 2A). This view relies on the

metaphor of a “flower”, where each "petal" represents the

possible occurrence of a specific anomaly in the code

fragment. Higher the radius of a "petal", the higher is the

probability of occurrence of the anomaly. The mechanism

for anomaly detection of Stench Blossom calculates this

probability. For more information about a specific

anomaly instance, the developer must click on the "petal"

displayed in the Ambient View. When the developer

selects an anomaly, the name of code anomaly is

presented in a dialog box and then, the Active View is

displayed to the developer (Figure 2B).

Fig.2. Ambient View (A) and Active View (B).

Finally, if the developer requires detailed information

about a specific instance of a code anomaly, the

Explanation View (Figure 3) can be displayed from a new

click on the name of the anomaly under analysis. The

developer can use the color gradation to verify which

code fragments are related to a specific instance of code

anomaly. Therefore, the interaction with anomalous code

elements provided by Stench Blossom, allows developers

better understanding the origins of different instances of a

given code anomaly.

Fig.3. Explanation View.

III. STUDY SETTINGS

This section presents the main concepts related to

execution of this research. The details related to the

experiment, the choice of subjects and procedures for data

analysis are described below.

3.1 Effectiveness evaluation

Effectiveness on detection of code anomalies is one of

most important criteria for choosing a technique to

perform this activity [8][9]. When a technique for

detection of code anomalies is considered effective, it

means the technique is able to detect a high number of

anomaly instances in a program. In addition, effective

techniques should ideally detect only anomaly instances

https://dx.doi.org/10.22161/ijaers.6753
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-7, Jul- 2019]

https://dx.doi.org/10.22161/ijaers.6753 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 469

are indeed a maintainability problem. If developers use

effective techniques, they can identify anomaly instances

and consequently refactoring opportunities in order to

improve the software maintainability [8][9].

We used precision and recall to evaluate the

effectiveness of anomaly detection. In the following, we

define the concepts required to understand these two

measures. Existing code anomalies (ECA) are actual

anomaly instances identified by the technique for

anomaly detection, where these instances are indeed

confirmed by the experts as a maintainability problem.

Experts are developers with deep knowledge about the

system and its maintainability problems. Detected code

anomalies (DCA) are anomaly instances identified

through the use of an anomaly detection technique. Not

all the detected code anomalies are confirmed as existing

(actual) code anomalies by the experts. True positives

(TP) are those anomaly instances present in both DCA

and ECA sets – i.e. anomaly instances identified by

experts that actually represent a maintainability problem.

False positives (FP) are anomaly instances identified by

the programmers using a detection technique, but they are

not in the ECA set. Finally, False negatives (FN) are

anomaly instances not identified by the developers, which

are in ECA.

The precision and recall measures defined in above

equations (Eq) were adapted from Rijsbergen [26] and

have been widely used in other studies [13][14][15].

These previous studies were also focused on comparing

techniques for anomaly detection. Precision quantifies the

rate of true positives by the number of detected code

anomalies. Recall quantifies the rate of true positives by

the number of existing code anomalies.

3.2 Research Questions

In order to address our general research question

(Section 1), we defined two specific goals: (i) assess

whether developers using the interactive detection (ID)

technique identify code anomalies more effectively

compared to the non-interactive detection (NID)

technique; and (ii) assess whether using ID technique lead

developers to perform ineffective refactoring compared to

NID technique. Thus, we defined three research questions

(Table 1) to achieve the aforementioned goals.

Table 1. Specific Research Questions

RQ Description

RQ1
Does the ID technique improve the recall in

detection of code anomalies?

RQ2
Does the ID technique improve the precision in

the detection of code anomalies?

RQ3
Does the ID technique contribute to perform

ineffective refactoring actions?

The first research Question (RQ1) compares both

techniques using precision measure. This analysis is

important because it shows the effectiveness of the ID

technique regarding the number of true positives and false

positives. Similarly, in our second research question

(RQ2), we compared the recall measure of ID and NID

techniques. The recall is as important as the precision. For

example, it allows us to find which technique induced

developers to miss more anomaly instances.

Finally, our third research question (RQ3) is focused

on evaluate how the techniques interfere in the refactoring

actions. As we discussed, code anomalies are considered

indicators for refactoring actions. Thus, our work

consider as effective refactoring actions, those

modifications applied over anomalous code elements in

order to improve the system maintainability. Although,

techniques for anomaly detection might indicate false

positives, and hence, developers will apply refactoring

actions over code elements that do not represent a true

threaten the system maintainability (i.e. ineffective

refactoring actions).

For each research question, we defined hypotheses

(H) which are summarized in Table 2. Thereby, we

defined H1 and H2 due to empirical evidence found in the

work of Murphy-Hill and Black [3]. This work pointed

out the use of interactive detection (ID) technique can

increase the number of anomaly instances found in the

source code. Therefore, our expectation is that the use of

ID technique may improve the effectiveness on detection

of code anomalies in terms of precision and recall

measures. We defined H3 as consequence of H1 and H2.

Since ID technique constantly provides (i.e. regardless

developers’ request) information about anomaly

instances, this amount and availability of information may

improve the developers' reliability on anomaly detection.

Consequently, our expectation is that developers may

reduce the amount of false positives and hence, a smaller

amount of ineffective refactoring actions would be

performed.

Table 2. Hypotheses

H Description

H1
The ID technique has a better recall than the NID

technique.

H2
The ID technique has a better precision than the NID

technique.

H3
The ID technique leads to performing less ineffective

refactoring actions than the NID technique.

3.3 Method and Subjects

We use the recommendations outlined in the work of

Kitchenham et al. [24] as a guide for establishing and

implementing a controlled experiment. The subjects

https://dx.doi.org/10.22161/ijaers.6753
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-7, Jul- 2019]

https://dx.doi.org/10.22161/ijaers.6753 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 470

accomplished tasks related to detection of code anomalies

and identification of refactoring opportunities (Section

3.4). They performed these tasks with support of ID and

NID techniques. We choose the ID technique provided by

Stench Blossom [3] for two main reasons: (i) it provides

support to all ID features [6], as previously discussed

(Section 2.2); and (ii) to the extent of our knowledge, it is

the only robust solution that provides automated support

for ID.

We choose the NID technique provided by manual

inspection due to it has been widely used in other

comparative studies [10][3][4] of techniques for anomaly

detection. In addition, this technique does not require

automated detection, thereby providing no specific

influence of a particular detection mechanism. Similarly,

we have also not found any other automated detection

technique that supports the same set of anomalies

addressed by Stench Blossom. For instance, the

automated detection proposed by van Emden and Moonen

[13] provides support to only two code anomalies

(Instanceof and Typecast). Conducting a comparative

experiment against just these two code anomalies would

produce quite limited results. Finally, it also provides us

with a reference to analyze the impact of an automated ID

technique.

The comparison between ID and NID techniques

allowed the analysis of whether particular characteristics

of ID (e.g. early detection) bring apparent

(dis)advantages. It is not the intent of this experiment to

compare various ID techniques, such as the one realized

by Stench Blossom. This choice is because, to the extent

of our knowledge, there is no other robust automated

solution that offers an interactive technique for supporting

anomaly detection. Finally, many would consider ID and

NID complementary rather than competitive techniques

as they are naturally targeted at different development

stages (Section 2.2). Although ID and NID can be used in

a complementary way, they can also be used with the

same purpose during a programming activity (e.g.

analysis of code fragments). In the context of our

experiment, the techniques for anomaly detection were

evaluated with the same purpose: detection of code

anomalies while browsing code elements.

Regarding to the subjects of this study, we recruited

two main groups: (i) postgraduate students and (ii)

professionals developers. These subjects were selected

based on the criteria of interest in participating of the

experiment. We expected from subjects, at least,

intermediate knowledge in Java and refactoring.

However, we did not expect from subjects knowledge

about code anomalies or the interactive detection

technique used in the experiment. Due to space

constraints, detailed description of subjects profile may be

found online in our paper supplementary material [25].

3.4 Experiment Description

The subjects performed tasks related to identification

of code anomalies and refactoring opportunities. In these

tasks, the subjects manipulated Java code files extracted

from Java Core Library [25]. We have chosen this project

because is an open source industrial system, making it

easier to replicate this study by independent researchers.

Four code files were selected according to the similar size

and amount of the code anomalies. The experimental

phase required two code files – one file for the ID task

(e.g. file A) and the other to NID task (e.g. file B). This

criterion was adopted because both files could be used in

the tasks, regardless of the order, reducing their influence

on the results of the experiment. Each experimental task

was individually conducted with the first author as an

observer of the experiment. It is also important to mention

we already provided the environment with all the files

and tooling support required to execute the experimental

tasks. The maximum time each subject had available for

executing the experimental tasks was 60 minutes. A

detailed description of experimental tasks may be found

online in our paper supplementary material [25]. Finally,

we organized the experiment into three different phases,

namely:

Phase 1 – Pre-Experiment: Initially, the subjects

answered a questionnaire to collect the necessary data for

definition of subjects’ profile (Section 4). Then, the

subjects received a material with the definition of eight

(8) code anomalies supported by Stench Blossom, as well

as an example of the occurrence of each one. A detailed

description of code anomalies used may be found online

in our paper supplementary material [25]. A deadline of

15 minutes (maximum) was given for the subject to

understand these definitions. This step was intended at

leveling the knowledge of the subjects. Finally, the

subjects underwent a training session about Stench

Blossom and the Eclipse IDE version used in the

experiment.

Phase 2 – Identification of Code Anomalies: Subjects

identified the occurrences of eight (8) different types of

code anomalies supported by Stench Blossom. The data

related to identification of code anomalies were

transcribed into a form. During the use of ID technique,

the subjects could agree or disagree with the detections

proposed by this technique. Thus, false positives arising

from the ID technique could be omitted when subjects

used their knowledge in making decisions about the

existing anomaly instances. Two tasks were performed in

https://dx.doi.org/10.22161/ijaers.6753
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-7, Jul- 2019]

https://dx.doi.org/10.22161/ijaers.6753 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 471

this experiment phase: one with the ID and another one

with the NID. We computed for each task: the total (T)

number of detected code anomalies (DCA), the number of

true positives (TP) and the number of false positives (FP).

The data obtained from these tasks will be used to

evaluate the first and second hypothesis (H1 and H2) and

the Section 4.1 provides its detailed description.

Phase 3 – Judgments of Refactoring: Subjects

performed judgments of refactoring using ID and NID

techniques. This phase consisted in identifying of Feature

Envy anomaly. We decided to focus on Feature Envy for

this experimental phase, as this is the only code anomaly

currently supported by the implementation of the

Explanation View (Section 2.2). After the identification

of Feature Envy, the subject should infer about the

usefulness of applying a refactoring action. In positive

case, the subject should answer the following questions:

(i) how scattered is the anomaly in the analyzed code, (ii)

how likely removing this anomaly and (iii) which

refactoring actions are required. The aforementioned

questions are directly related to judgments of refactoring

[1][2]. The following concepts are required to understand

this task: Ineffective Refactoring (IR) occurs when the

developer positively infers about refactoring from an

instance of Feature Envy anomaly, which has been

considered a false positive. Effective Refactoring (ER)

occurs when the developer positively infers about

refactoring necessity from an instance of Feature Envy

anomaly, which has been considered a true positive. The

data obtained from these tasks will be used to evaluate the

third hypothesis (H3) and its description can be seen in

Section 4.2.

3.5 Analysis Method

We applied statistical analysis on the data obtained

from experimental tasks. Such statistical analyzes were

carried out with support of the R tool [27]. This tool

provides means for calculating statistical tests considered

in this study: (i) Wilcoxon signed-rank test [28], and (ii)

paired T-Test [28]. The first one is applied to the values

associated with the correctly identified anomaly

instances. This test was selected since the data were not

following a normalized distribution. The second one is

applied to the values of recall and precision since the

obtained measures were following a normalized

distribution. The execution of the experimental tasks

derived data for two samples: the sample with the aid of

ID and the sample with the aid of NID technique. The

aforementioned statistical tests can be applied since each

observation in the first sample can be paired with one

observation of the second sample.

IV. RESULTS AND DISCUSSION

In this section, we present the results of the

experimental tasks described in Section 3.4. Each subject

spent on average 45 minutes to execute the experiment.

Therefore, the upper limit of one hour was enough for the

subjects conclude the tasks. Whenever it is appropriate,

statistical analyzes are presented. The first phase (Section

3.4) of the experiment involved the application of a

questionnaire aiming to determine the subjects’ profile.

Table 3 summarizes the main characteristics of the

subjects’ profile. Their profile meets our study

assumptions since all subjects have at least intermediate

knowledge about Java, detection of code anomalies and

program refactoring. The following subsections present

the key results and findings revealed by our study.

Table 3. Results of the pre-experiment questionnaire

Question Results

Professional

practice

7 Subjects were postgraduate students and 7

subjects were professional developers

Experience time

Half of the sample had between 5 and 8

years of experience in software

development

Using IDE All subjects have used some IDE

Java proficiency
On a scale from 0 to 4 (*), 36% of subjects

answered 2 and 57% of subjects answered 3

Anomaly

detection

proficiency

On a scale from 0 to 4 (*), approx. 80% of

the subjects answered 1 or 2.

Refactoring

proficiency

On a scale from 0 to 4 (*), approx. 60% of

the subjects answered 3 or 4.

(*) 0 means "not proficient" and 4 "very proficient"

4.1 Identification of Code Anomalies

The second phase involved the execution of the tasks

related to identification of code anomalies using non-

interactive detection (NID) and interactive detection (ID)

techniques. The tasks focused on analyzing the

effectiveness of using ID on the detection of code

anomalies. Table 4 describes the results per subject or full

sample (FS) with respect to the detected code anomalies

(DCA), true positives (TP), and false positives (FP).

Table 4. Results of identification of code anomalies

Subject

NID

Subject

ID

DCA TP
FP

DCA TP
FP

Developer 1 4 4 0 Developer 1 6 5 1

Developer 2 7 6 1 Developer 2 15 13 2

Developer 3 9 8 1 Developer 3 16 14 2

Developer 4 6 5 1 Developer 4 9 7 2

https://dx.doi.org/10.22161/ijaers.6753
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-7, Jul- 2019]

https://dx.doi.org/10.22161/ijaers.6753 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 472

Developer 5 10 8 2 Developer 5 11 9 2

Developer 6 12 9 3 Developer 6 14 11 3

Developer 7 6 5 1 Developer 7 5 5 0

Total 54 45 9 Total 76 64 12

Student 1 4 3 1 Student 1 10 8 2

Student 2 4 4 0 Student 2 5 4 1

Student 3 8 6 2 Student 3 12 9 3

Student 4 5 4 1 Student 4 3 3 0

Student 5 7 5 2 Student 5 10 7 3

Student 6 5 4 1 Student 6 6 5 1

Student 7 2 2 0 Student 7 8 6 2

Total 35 28 7 Total 54 42 12

FS Total 89 73 16 FS Total 130 106 22

FS Average
6,1 5,2 1,1

FS Average
9,3 7,6 1,6

ID technique increases both true and false positives:

We observed the subjects identified 22 false positives

when using the ID technique. That is, the number of false

positives is approximately 38% higher than the number of

false positives (16) produced when subjects used the NID

technique. Similarly, the subjects identified 106 true

positives (i.e. anomalies correctly identified) based on the

use of ID technique, while subjects identified 73 true

positive based on the use of NID technique. Therefore,

the use of ID increased in 45% the total of true positives

by the subjects when identifying code anomalies. Finally,

the data related to true positives generated with ID and

NID techniques were statistically significant (p = 0.002,

df = 12, z = 3.05, using a Wilcoxon signed-ranks test

[28]).

Aiming to provide an additional perspective on the

effectiveness of the interactive detection of code

anomalies, we also analyzed precision and recall

measures. Therefore, we applied those collected measures

in the equations defined in Section 3.1. The Table 5

illustrates the results of these metrics for both ID and NID

techniques. The precision and recall measures were

calculated in order to address the research questions RQ1

and RQ2. In addition, these results were used in order to

test the hypotheses H1 and H2, respectively.

ID increases recall: When analyzing recall measures,

we observed that, in average, the subjects using the ID

technique achieved a score of 0.30, while the use of the

NID achieved 0.21. Thus, the results represent a

difference of approximately 30% in favor of the ID

technique. Similar results could be observed when

analyzing different samples (e.g. students or developers).

For instance, the developers’ sample improves recall

values in 40%, while the students’ sample improves recall

values in 50%. Likewise, the data related to recall in this

task through ID and NID was statistically significant (p =

0.0013, df = 13, t = 4.06, using a Paired T-Test [28]) in

the task of identification of code anomalies.

We also found that recall suffers direct influence

regarding the subjects’ working experience. The results

allowed us to conclude the use of ID can directly affect

the recall values. The use of ID implies the interaction of

subjects with the anomalous code elements as they

progressively analyze code fragments. Therefore,

developers are able to achieve more coverage with ID

regarding the correctly identified instances of code

anomalies. Finally, we can confirm the first hypothesis

(H1), since the use of ID led to better recall values

compared to the use of NID.

Table.5. Precision and recall

Subject
ID

Subject
NID

P R P R

Developer 1 0,83 0,20 Developer 1 1,00 0,16

Developer 2 0,87 0,52 Developer 2 0,86 0,24

Developer 3 0,88 0,56 Developer 3 0,89 0,32

Developer 4 0,78 0,28 Developer 4 0,83 0,20

Developer 5 0,82 0,36 Developer 5 0,80 0,32

Developer 6 0,79 0,44 Developer 6 0,75 0,36

Developer 7 1,00 0,20 Developer 7 0,83 0,20

Average 0,85 0,37 Average 0,86 0,26

Student 1 0,80 0,32 Student 1 0,75 0,12

Student 2 0,80 0,16 Student 2 1,00 0,16

Student 3 0,75 0,36 Student 3 0,75 0,24

Student 4 1,00 0,12 Student 4 1,00 0,08

Student 5 0,70 0,28 Student 5 0,71 0,20

Student 6 0,83 0,20 Student 6 0,80 0,16

Student 7 0,75 0,24 Student 7 0,80 0,16

Average 0,80 0,24 Average 0,83 0,16

Total Average 0,82 0,30 Total Average 0,84 0,21

ID and NID techniques have similar precision: We

observed the average of precision measures with ID was

0.82, while the use of NID achieved 0.84. As opposed to

recall values, the difference of precision measures with

NID and ID was not significant. This finding is revealed

when analyzing percentage values. We also realized the

subjects’ working experience directly affected the results.

The professionals’ sample achieved better precision

values compared to the students’ sample. As previously

discussed, although the use of the ID technique increases

the number of false positive, it also tends to increase the

number of true positive - which directly affect precision

values. According to results illustrated in Table 5, there is

no evidence to support that the subjects using ID have

worse (or better) precision than subjects using NID

technique. Therefore, we cannot confirm or refute the

second hypothesis (H2).

https://dx.doi.org/10.22161/ijaers.6753
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-7, Jul- 2019]

https://dx.doi.org/10.22161/ijaers.6753 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 473

The results indicated there is no negative impact when

the interactive detection of code anomalies is performed

progressively - i.e. while the developer is browsing or

editing the code. Software developers are likely to benefit

from detecting anomalies earlier, when they constantly

receive feedback provided by ID. Moreover, the constant

availability and higher amount of information through ID

led developers to accept a higher number of anomaly

instances. However, if the subject holds a higher level of

working experience, he can be more confident to infer

(i.e. accept or reject) about the suggestions of anomaly

instances from ID. The data described in Table 4 allow us

confirm this assumption. More experienced developers

using ID obtained a lower number of false positives

compared to the students (fewer working experience)

using the same technique. In a similar way, developers

identified a higher number of true positives compared to

students. Finally, these results are similar to those

presented in the work of Murphy-Hill and Black [3], as

developers identify more true positives using ID

compared to developers using NID technique.

4.2 Judgments of Refactoring

In the third phase (Section 3.4), subjects performed

judgments of refactoring using non-interactive detection

(NID) and interactive detection (ID) techniques. These

tasks were performed in order to address the research

question RQ3, which is validated by testing the

hypothesis H3. In summary, we analyzed whether the

subjects performed ineffective refactoring (IR) or

effective refactoring (ER) related to occurrence of Feature

Envy anomaly. Section 3.4 shown a detailed description

of the judgments of refactoring. Finally, the Table 6

illustrates results from the accomplishment of

aforementioned tasks.

Table 6. Results on judgments of refactoring

Subject
NID

Subject
ID

IR ER IR ER

Developer 1 - X Developer 1 X -

Developer 2 - X Developer 2 - X

Developer 3 - X Developer 3 - X

Developer 4 - X Developer 4 - X

Developer 5 - X Developer 5 - X

Developer 6 - X Developer 6 - X

Developer 7 X - Developer 7 X -

Total 1 6 Total 2 5

Student 1 X - Student 1 X -

Student 2 - X Student 2 - X

Student 3 - X Student 3 X -

Student 4 - X Student 4 - X

Student 5 - X Student 5 X -

Student 6 - X Student 6 - X

Student 7 X - Student 7 X -

Total 2 5 Total 4 3

FS Total 3 11 FS Total 6 8

ID technique may increase IR: We verified the

subjects performed 3 ineffective refactoring when using

the NID, while the subjects using the ID performed 6.

That is, the use of ID occasioned a growth of 50% in the

ineffective refactoring performed by subjects. Moreover,

when analyzing the results achieved by the developers’

sample, subjects performed only 1 ineffective refactoring

when using NID, while 2 ineffective refactoring were

performed when ID was employed. The same proportion

of growth (i.e. 50%) occurs in the results obtained from

students’ sample. We noticed 2 ineffective refactoring

were performed when the NID was used, while subjects

using the ID performed 4.

In summary, we observed the subjects using ID are

likely to perform more ineffective refactoring compared

to subjects using NID technique. Moreover, we could

observe that working’ experience also influences the

results of this task, since the developers performed 50%

fewer ineffective refactoring than the students. During the

second experimental phase, we observed most of the false

positives were related to occurrences of the Feature Envy

anomaly. Furthermore, the students using ID pointed out

the majority of false positives. This fact led us to

conclude occurrences of false positives might be directly

associated with developers’ working experience.

Moreover, the use of the ID technique for the anomaly

detection also directly affects the refactoring actions.

Concluding, we can refute the third hypothesis (H3)

by analyzing the collected data associated with judgments

of refactoring (Table 6). The use of ID might induce

developers to perform ineffective refactoring actions

because the existence of the anomaly instance that could

indicate the refactoring action may be untruthful. In short,

if the developer performs refactoring on a false positive

related to some anomaly, the effort to accomplishment

this task might not contribute to improving the system

maintainability.

V. THREATS TO VALIDITY

Sample size and diversity: Fourteen subjects

performed the controlled experiment. The results may

have direct influence from size of the sample and the

subjects’ working experience on anomaly detection and

refactoring. To mitigate this threat, we choose a sample

comprising by students and developers. Furthermore, we

conducted training sessions in order to leveling the

knowledge of subjects with respect to these topics.

Experiment Complexity: Other threats to validity are

related to: (i) the difficulty in understanding code files

https://dx.doi.org/10.22161/ijaers.6753
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-7, Jul- 2019]

https://dx.doi.org/10.22161/ijaers.6753 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 474

chosen for the experiment, and (ii) the nature of the

selected experimental tasks. With the aim of minimizing

the first threat, the code files were selected according to

the size and time available for each task. Furthermore, we

performed a pilot experiment in order to adjust the time

required to perform these tasks. Aiming at mitigate the

second threat, one of the paper’s authors monitored all the

experimental tasks. In addition, subjects received

instructions for completing the questionnaires and

demonstrations prior to the completion of the experiment

tasks.

Integrated Development Environment: We used the

version 3.3 (Europe) of the eclipse IDE due to

compatibility problems of Stench Blossom. Thus, the

subjects’ experience in using this IDE version may have

been harmed because it was a version older than the one

being used by developers nowadays. However,

observations of the subjects did not lead us this

phenomenon had any influence on their performance. In

addition, aiming to minimize this threat, we provided

specific training on the use of the Eclipse IDE 3.3.

Sample of Code Anomalies: Finally, we restricted

subjects to discussing only eight types of code anomalies.

In contrast, Fowler has cataloged a list with more than

twenty code anomalies [1]. Therefore, the eight code

anomalies supported by Stench Blossom may not

necessarily be a representative sample of anomalies found

in certain programs. Likewise, we only focused on one

code anomaly in the Explanation View - Feature Envy

anomaly. Therefore, subjects’ judgments of refactoring

may be different for other kinds of code anomalies.

VI. RELATED WORK

This study represents a first independent assessment

of interactive detection (ID) of code anomalies. We have

chosen the ID technique supported by the Stench Blossom

(Section 2.2). This technique was proposed and

implemented by Murphy-Hill and Black [3]. We have

chosen this particular technique for three main reasons: (i)

it provides support to all main features of an ID technique

[6]; (ii) it offers automated robust support for ID; and (iii)

to the extent of our knowledge, it is the only robust

solution that provides automated support for ID.

In our evaluation, we compared the effectiveness on

detection of code anomalies with ID and NID techniques.

Mäntylä et al. [10] also conducted an empirical evaluation

comparing two different techniques. However, they did

not evaluate the ID technique for anomaly detection.

Instead, they compared manual inspection in contrast to

semi-automatic technique (i.e. both techniques were non-

interactive). Since ID technique provided by Stench

Blossom presents a visualization environment, we seek in

the literature related works that also present use of these

environments in detection of code anomalies. Parnin et al.

[11] evaluated the impact of visualization techniques in

the anomaly detection. However, they did not evaluate the

use of ID-sensitive visualization of code anomalies.

None of the aforementioned studies presented

information about false positives found from the use of

different detection techniques. Moreover, none of them

analyzed the impact of ID on the identification of

refactoring opportunities and their consequences.

Although Macia et al. [12] evaluated the number of false

positives on anomaly detection, the technique used by

them does not support ID. Finally, only Murphy-Hill and

Black [3] evaluated the use of their ID technique.

However, they prioritized aspects related to usability

guidelines such as availability, lucidity and context

sensitiveness. Consequently, they did not observe if the

ID technique improved the effectiveness on anomaly

detection and, consequently, on judgments of refactoring.

VII. CONCLUSION AND FUTURE WORKS

The use of interactive detection (ID) technique can

lead developers to early identify opportunities for

refactoring actions and hence, bring significant benefits to

system maintainability. Using ID: (i) developers can

perform other programming activities in source code

concomitantly to anomaly detection; (ii) developers are

constantly aware about the anomaly instances when

analyzing different code fragments; and (iii) developers

tend to find early a higher number of anomaly instances

due to the amount and availability of information related

to code anomalies.

Although developers using ID may identify more

anomaly instances found in their code, its use may also

increase the number of false positives in early anomaly

detection activities. Findings of our study point out that

these differences of ID and NID occur for different

reasons. First, the amount and availability of information

may confuse the developer in the task of interactive

identification of code anomalies. Second, the lack of

developers’ working experience directly contributes to a

higher acceptance of suggestions of anomaly instances

yielded by an ID technique.

The effectiveness measurements also revealed that ID

do not considerably improve the precision of early

anomaly identification. However, we realized the

subjects’ working experience could directly affect the

results associated with this measure. The higher the

subjects’ working experience, the higher is the values

observed for precision. Analogously, the subjects’

https://dx.doi.org/10.22161/ijaers.6753
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-7, Jul- 2019]

https://dx.doi.org/10.22161/ijaers.6753 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 475

working experience also directly affected the recall

measures. Actually, the subjects’ working experience

improved recall values in a greater proportion compared

to values associated with precision.

Finally, new experiments about ID effectiveness can

be performed using a different set of code anomalies with

different levels of granularity (i.e. anomalies that affect

different code elements, such as packages, classes and

methods). This recommendation is even more relevant for

the second phase of the experiment (Section 3.4), which

focused on the occurrence of the Feature Envy anomaly.

REFERENCES

[1] Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts,

D. Refactoring: Improving the Design of Existing Code.

Addison-Wesley Professional, 1999.

[2] Tourwé, T. and Mens, T. Identifying Refactoring

Opportunities Using Logic Meta-programming. In Proc. of

7th European Conference on Software Maintenance and

Reengineering, pp. 91-100, 2003.

[3] Murphy-Hill, E., and Black, A.P. An Interactive Ambient

Visualization for Code Smells. In Proc. of the 5th Int’l

Symposium on Software Visualization, pp. 5-14, 2010.

[4] Mäntylä, M.V., Vanhanen, J., and Lassenius, C. Bad

Smells – Humans as Code Critics. In Pro. of 20th Int’l

Conference on Software Maintenance, pp. 399-408, 2004.

[5] Marinescu, R. Measurement and Quality in Object-

Oriented Design. In Proc. of 21th International

Conference on Software Maintenance, pp. 701-704, 2005.

[6] Albuquerque, D.W. et al. Detecção Interativa de

Anomalias de Código – Um Estudo Experimental. In Proc.

of 11th Brazilian Workshop on Software Modularity,

2014.

[7] Murphy-Hill, E. and Black, A.P. Seven Habits of a Highly

Effective Smell Detector. In Proc. of Int’l Workshop on

Recommendation Systems for Software Engineering, pp.

36-40, 2008.

[8] Murphy-Hill, E. and Black, A.P. Refactoring Tools:

Fitness for Purpose. IEEE Software, Vol. 25, Issue 5, pp.

38-44, August 2008.

[9] Simon, F., Steinbrückner, F., and Lewerentz, C. Metrics

Based Refactoring. In Proc. of 5th European Conference

on Software Maintenance and Reengineering, pp. 30-38,

2001.

[10] Mäntylä, M.V. An Experiment on Subjective Evolvability

Evaluation of Object-Oriented Software: Explaining

Factors and Inter Rater Agreement. In Proc. of Int ’l

Symposium on Empirical Software Engineering, 2005.

[11] Parnin, C., Görg, C., and Nnadi, O. A Catalogue of

Lightweight Visualizations to Support Code Smell

Inspection. In Proc. of 3th Int’l Symposium on Software

visualization, pp. 77-86, 2008.

[12] Macia, I., Arcoverde, R., Garcia, A., Chavez, C. and Staa,

A. On the Relevance of Code Anomalies for Identifying

Architecture Degradation Symptoms. In Proc. of 16th

European Conference on Software Maintenance and

Reengineering, pp. 277-286, 2012.

[13] Van Emden, E., and Moonen, L. Java Quality Assurance

by Detecting Code Smells. In Proc. of 9th Working

Conference on Reverse Engineering, pp. 97-106, 2002.

[14] Moha, N. et al. DECOR: A Method for the Specification

and Detection of Code and Design Smells. IEEE

Transactions on Soft. Engineering, Vol. 36, Issue 1, pp.

20-36, January 2010.

[15] Dhambri, K., Sahraoui, H., and Poulin, P. Visual

Detection of Design Anomalies. In Proc. of 12th European

Conf. on Soft. Maintenance and Reengineering, pp-279-

283, 2008.

[16] Arevalo, G. et al. Discovering Unanticipated Dependency

Schemas in Class Hierarchies. In Proc. of 9th European

Conf. on Software Maintenance and Reengineering, pp.

62-71, 2005.

[17] Opdyke. W.F. Refactoring Object-Oriented Frameworks,

University of Illinois at Urbana-Champaign, 1992.

[18] Murphy-Hill, E., and Black, A.P. Why Don’t People Use

Refactoring Tools? In Proc. of Workshop on Refactoring

Tools, 2007.

[19] Kerievsky, J. Refactoring to Patterns. Pearson Higher

Education, 2004.

[20] Murphy-Hill, E., Parnin, C., and Black, A.P. How We

Refactor, and How We Know It. In Proc. of 31st Int’l

Conference on Software Engineering, pp. 287-297, 2009.

[21] Pizka, M. Straightening Spaghetti Code with Refactoring.

In Proc. of Int’l Conference on Software Engineering

Research and Practice, pp. 846-852, 2004.

[22] Bourquin, F., and Keller, R. High-Impact Refactoring

Based on Architecture Violations. In Proc. of 11th

European Conference on Software Maintenance and

Reengineering, pp. 149-158, 2007.

[23] Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A.

JDeodorant: Identification and Removal of Type-

Checking Bad Smells. In Proc. of 11th European Conf. on

Software Maintenance and Reengineering, pp. 329-331,

2007.

[24] Kitchenham, B. et al. Preliminary Guidelines for

Empirical Research in Software Engineering. IEEE

Transactions on Software Eng., Vol. 28, Issue 8, pp. 721-

734, August 2002.

[25] Repository of the controlled experiment. Available in: <

http://www.inf.puc-rio.br/~inf2107/experimento.html>

[26] Rijsbergen, C. J. Information Retrieval. Butterworth 1979.

[27] R Tool. Available in: <http://www.r-project.org/>. Access

in August 2014.

[28] Siegel, S., and Castellan, J. Nonparametric Statistics for

the Behavioral Sciences, 2nd Edition. Mc-Grawl-Hill

International Editions, 1988.

https://dx.doi.org/10.22161/ijaers.6753
http://www.ijaers.com/

