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Abstract—Background: Detection of code anomalies should be performed as early as possible in order to 

effectively reveal refactoring opportunities in due time. Refactoring aims at improving software maintainability, 

but their late application is counter-productive or even prohibitive. Detection of code anomalies is traditionally 

supported by non-interactive detection (NID) techniques, which encourage developers to reveal anomalies in 

later revisions or versions of a program. The reason is that this technique does not support progressive 

interaction of developers with anomalous code. In addition, it reveals anomalies in the entire source code upon 

an eventual developer request. More recently, the notion of interactive detecti on (ID) has emerged to address 

NID’s limitations. This technique reveals anomalies when code fragments are still being edited and without an 

explicit developer request, thereby encouraging early anomaly detection. Problem Statement: Recent studies 

suggest the use of NID might lead to: (i) a low number of correctly identified anomalies, and (ii) ineffective 

refactoring actions. Although ID seems promising, there is no knowledge about its impact on anomaly detection 

and refactoring actions. Goal: Evaluate the effectiveness of an ID technique on early anomaly detection. In 

addition, we analyze the aid of an ID technique in performing effective refactoring actions. Method:  We 

conducted a controlled experiment with 14 subjects that underwent tasks related to ano maly detection and 

judgments of required refactoring actions. Results: Our study reveals the use of ID improves anomaly detection 

as developers tend to early identify more anomalies when compared to the use of NID. Conclusions: Although 

ID contributes to detect more anomalies than NID, the former may induce to ineffective refactoring actions.   

Keywords—Code Anomalies, Interactive Detection,  Software Refactoring. 

 

I. INTRODUCTION 

Code anomalies are structures in a program that often 

indicate the presence of deeper maintainability problems 

[1]. Code anomalies should be early detected, during the 

ongoing implementation of a program rather than in later 

maintenance tasks. Early detection of anomalies is likely 

to lead to effective refactoring actions [2]. Refactoring is 

a behavior-preserving change in the program structure 

intended to remove code anomalies and improve software 

maintainability [1]. However, the early detection of code 

anomalies is not a trivial task and many factors can hinder 

the realization of this task. Among those factors, we 

highlight that developers may not be able to early identify 

code anomalies due to their lack of experience on this 

task [3]. In addition, conventional techniques may offer 

limited support or discourage early detection of code 

anomalies [3].  

Several techniques for (semi-) automated detection of 

code anomalies have been proposed in the literature (e.g. 

[3][5][6][7]). Most of these existing techniques are 

characterized as supporting non-interactive detection 

(NID) [3][6]. NID techniques reveal a global list of code 

anomalies once the source code is completed and 

compiled. Moreover, the use of NID demands an explicit 

and eventual request of the developer so that the full 

source code analysis is triggered. More importantly, NID 

techniques do not offer means for developers interact with 

the anomalous code elements while they are producing, 

editing or inspecting their program statements. All these 

characteristics of NID techniques encourage late detection 

of code anomalies.  

On the other hand, the notion of interactive detection 

(ID) has been recently proposed [6]. An ID technique is 

intended to reveal code anomalies in program fragments 
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without an explicit developer request, thereby 

encouraging early detection of code anomalies. In 

contrast to NID, ID provides support for developers 

interacting with anomalous code as they edit or browse 

program statements. Unfortunately, there is little 

empirical knowledge about the effectiveness of 

interactive detection of code anomalies [6].  

Most of the empirical studies on anomaly detection 

strictly focuses on the evaluation of NID [9][10][11][12]. 

These studies pointed out NID techniques induce to a low 

number of correctly identified code anomalies. Other 

studies also suggested NID techniques induce to the 

realization of ineffective refactoring actions 

[21][22].Therefore, the expectation is that ID techniques 

can better promote early identification of code anomalies 

and, as a consequence, effective refactoring actions. Even 

though organizations and developers might want to 

consider the adoption of ID techniques, there is no 

evidence in the literature about its effectiveness on 

anomaly detection. In other words, there is still a lack of 

empirical knowledge about the use of ID. 

Therefore, our goal is  to address the following 

research question: “Can the use of ID improve the 

effectiveness on anomaly detection and refactoring 

actions?”. For doing so, we conducted a controlled 

experiment involving 14 subjects with different working 

experience and technical knowledge. Subjects performed 

tasks related to anomaly detection and judgments of 

refactoring with support of both ID and NID techniques. 

In order to evaluate the effectiveness of both techniques, 

we used two measures: precision and recall. We select 

these two measures because they have been widely 

adopted in other effectiveness studies involving code 

anomaly detection [13][14][15]. Our comparative analysis 

allowed us to evaluate whether some ID characteristics 

could bring benefits or drawbacks for effective anomaly 

detection. 

The experimental results revealed the use of ID has 

achieved better effectiveness on code anomaly detection 

when compared to NID techniques. Developers identified 

a much higher number of code anomalies when using the 

ID. On the other hand, we have observed the use of ID 

might lead to a high number of false positives and, 

consequently, developers can be induced to perform 

ineffective refactoring actions.  

The remainder of this paper is organized as follows. 

Section 2 introduces basic concepts required to 

understand the analysis performed in our study. Study 

settings are described in Section 3 while the results 

associated with interactive detection of code anomalies 

are discussed in Section 4. In Section 5, we present the 

threats to validity observed in our study. Related work is 

discussed in Section 6. Finally, we present our 

conclusions and point out directions for  future work in 

Section 7. 

 

II. BACKGROUND 

This section presents essential concepts related to 

code anomalies, code refactoring and support for anomaly 

detection. 

2.1 Code Anomalies and Refactoring 

Code anomalies are symptoms on the program 

structure that may indicate the presence of deeper 

maintainability design problems [1]. They suggest where 

perfective maintenance is required in the source code [1]. 

Several code anomalies have been proposed and 

cataloged by several researchers, including Fowler [1], 

van Emden and Moonen [13], and Arevalo [16]. Typical 

examples of code anomalies are Feature Envy and Long 

Method [1].   

Early detection of code anomalies is the only 

possibility of promoting the longevity of a software 

system. Early detection is the ability of identifying 

opportunities for refactoring [1][19][20] as soon as 

anomalies are introduced in the source code by 

programmers. Longer the code anomalies remain in the 

source, harder it becomes to refactor out these anomalies 

from a program. Refactoring [1][17] is defined as 

behavior-preserving change made in structure of a 

program with the aim of improving software 

maintainability. Fowler [1] has identified more than 70 

different types of refactoring, which range from local 

changes in a specific code element (as the Extract Local 

Variable refactoring) to a global change (as the Extract 

Class refactoring).  

The effectiveness of refactoring actions is largely 

dependent on the effectiveness of detecting the code 

anomalies. Preliminary studies [21][22] have exposed 

negative consequences on code quality whenever 

ineffective and late refactoring actions are performed. 

Thus, developers need to identify anomaly instances more 

effectively and opportunely so that refactoring actions can 

be performed. In contrast, if developers miss the 

occurrences of anomaly instances, developers can 

perform ineffective refactoring actions in the source code. 

2.2 Support to Detection of Code Anomalies  

Usually, developers use (semi)automated techniques 

to guide their effort on anomaly detection [18][23]. These 

techniques are basically comprised of two components 

[3][7]: (i) a mechanism for anomaly detection; and (ii) a 

user interface responsible for displaying detected anomaly 

instances, i.e. occurrences of code anomalies identified by 
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the detection mechanism. The detection mechanism may 

allow developers to choose or define algorithms for 

anomaly detection. Developers can choose some metrics 

and thresholds to compose their own detection algorithms 

[5]. Based on developer’s interaction with the 

aforementioned components and the anomalous code 

elements, anomaly detection can be classified according 

to two different techniques, as shown in Figure 1. 

 

Fig.1: Comparison between techniques for anomaly 

detection. 

 

Interactive detection (ID) is a technique that supports 

developer’s interaction with anomalous code elements 

(Figure 1). The ID techniques reveal anomaly instances in 

code fragments without an explicit request from the 

developer. Thus, the ID techniques constantly work on 

detecting anomaly instances in code fragments being 

manipulated by the developer. Thereby, a developer using 

ID techniques can early identify instances of code 

anomalies. Once developers do not directly interact with 

the mechanism for anomaly detection, they are able to 

perform other programming activities. In summary, 

developers are able to analyze, modify and implement the 

source code while they interact with the anomalous code 

elements [6]. 

Non-interactive detection (NID) is a technique that 

does not support developer’s interaction with anomalous 

code elements (Figure 1). The NID techniques reveal 

anomaly instances in the entire source code upon an 

explicit request from the developer. The mechanism for 

anomaly detection receives the request, and then, it 

detects anomaly instances in the entire source code. 

Thereby, developers using NID techniques identify 

anomaly instances only later (e.g., when code is already 

implemented). Once developers directly interact with the 

mechanism of anomaly detection, they are not able to 

concurrently perform other programming activities in the 

source code [6]. 

We analyze the ID technique through Stench Blossom 

[3]. This tool provides the programmer with three 

different views, which progressively offer information 

about the anomaly instances in the code fragment being 

visualized or edited. Initially, the developer interacts with 

the Ambient View (Figure 2A). This view relies on the 

metaphor of a “flower”, where each "petal" represents the 

possible occurrence of a specific anomaly in the code 

fragment. Higher the radius of a "petal", the higher is the 

probability of occurrence of the anomaly. The mechanism 

for anomaly detection of Stench Blossom calculates this 

probability. For more information about a specific 

anomaly instance, the developer must click on the "petal" 

displayed in the Ambient View. When the developer 

selects an anomaly, the name of code anomaly is  

presented in a dialog box and then, the Active View is 

displayed to the developer (Figure 2B). 

 

Fig.2. Ambient View (A) and Active View (B). 

 

Finally, if the developer requires detailed information 

about a specific instance of a code anomaly, the 

Explanation View (Figure 3) can be displayed from a new 

click on the name of the anomaly under analysis. The 

developer can use the color gradation to verify which 

code fragments are related to a specific instance of code 

anomaly. Therefore, the interaction with anomalous code 

elements provided by Stench Blossom, allows developers 

better understanding the origins of different instances of a 

given code anomaly. 

 
Fig.3. Explanation View. 

 

III. STUDY SETTINGS 

This section presents the main concepts related to 

execution of this research. The details related to the 

experiment, the choice of subjects and procedures for data 

analysis are described below. 

3.1 Effectiveness evaluation  

Effectiveness on detection of code anomalies is one of 

most important criteria for choosing a technique to 

perform this activity [8][9]. When a technique for 

detection of code anomalies is considered effective, it 

means the technique is able to detect a high number of 

anomaly instances in a program. In addition, effective 

techniques should ideally detect only anomaly instances 
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are indeed a maintainability problem. If developers use 

effective techniques, they can identify anomaly instances 

and consequently refactoring opportunities in order to 

improve the software maintainability [8][9]. 

We used precision and recall to evaluate the 

effectiveness of anomaly detection. In the following, we 

define the concepts required to understand these two 

measures. Existing code anomalies (ECA) are actual 

anomaly instances identified by the technique for 

anomaly detection, where these instances are indeed 

confirmed by the experts as a maintainability problem. 

Experts are developers with deep knowledge about the 

system and its maintainability problems. Detected code 

anomalies (DCA) are anomaly instances identified 

through the use of an anomaly detection technique. Not 

all the detected code anomalies are confirmed as existing 

(actual) code anomalies by the experts. True positives 

(TP) are those anomaly instances present in both DCA 

and ECA sets – i.e. anomaly instances identified by 

experts that actually represent a maintainability problem. 

False positives (FP) are anomaly instances identified by 

the programmers using a detection technique, but they are 

not in the ECA set. Finally, False negatives (FN) are 

anomaly instances not identified by the developers, which 

are in ECA.   

The precision and recall measures defined in above 

equations (Eq) were adapted from Rijsbergen [26] and 

have been widely used in other studies [13][14][15]. 

These previous studies were also focused on comparing 

techniques for anomaly detection. Precision quantifies the 

rate of true positives by the number of detected code 

anomalies. Recall quantifies the rate of true positives by 

the number of existing code anomalies.   

3.2 Research Questions 

In order to address our general research question 

(Section 1), we defined two specific goals: (i) assess 

whether developers using the interactive detection (ID) 

technique identify code anomalies more effectively 

compared to the non-interactive detection (NID) 

technique; and (ii) assess whether using ID technique lead 

developers to perform ineffective refactoring compared to 

NID technique. Thus, we defined three research questions 

(Table 1) to achieve the aforementioned goals. 

Table 1. Specific Research Questions 

RQ Description 

RQ1 
Does the ID technique improve the recall in 

detection of code anomalies? 

RQ2 
Does the ID technique improve the precision in 

the detection of code anomalies? 

RQ3 
Does the ID technique contribute to perform 

ineffective refactoring actions? 

The first research Question (RQ1) compares both 

techniques using precision measure. This analysis is 

important because it shows the effectiveness of the ID 

technique regarding the number of true positives and false 

positives. Similarly, in our second research question 

(RQ2), we compared the recall measure of ID and NID 

techniques. The recall is as important as the precision. For 

example, it allows us to find which technique induced 

developers to miss more anomaly instances.  

Finally, our third research question (RQ3) is focused 

on evaluate how the techniques interfere in the refactoring 

actions.  As we discussed, code anomalies are considered 

indicators for refactoring actions. Thus, our work 

consider as effective refactoring actions, those 

modifications applied over anomalous code elements in 

order to improve the system maintainability. Although, 

techniques for anomaly detection might indicate false 

positives, and hence, developers will apply refactoring 

actions over code elements that do not represent a true 

threaten the system maintainability (i.e. ineffective 

refactoring actions). 

For each research question, we defined hypotheses 

(H) which are summarized in Table 2. Thereby, we 

defined H1 and H2 due to empirical evidence found in the 

work of Murphy-Hill and Black [3]. This work pointed 

out the use of interactive detection (ID) technique can 

increase the number of anomaly instances found in the 

source code. Therefore, our expectation is that the use of 

ID technique may improve the effectiveness  on detection 

of code anomalies in terms of precision and recall 

measures. We defined H3 as consequence of H1 and H2. 

Since ID technique constantly provides (i.e. regardless 

developers’ request) information about anomaly 

instances, this amount and availability of information may 

improve the developers' reliability on anomaly detection. 

Consequently, our expectation is that developers may 

reduce the amount of false positives and hence, a smaller 

amount of ineffective refactoring actions would be 

performed. 

Table 2. Hypotheses 

H Description 

H1 
The ID technique has a better recall than the NID 

technique.  

H2 
The ID technique has a better precision than the NID 

technique. 

H3 
The ID technique leads to performing less ineffective 

refactoring actions than the NID technique. 

 

3.3 Method and Subjects 

We use the recommendations outlined in the work of 

Kitchenham et al. [24] as a guide for establishing and 

implementing a controlled experiment. The subjects 
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accomplished tasks related to detection of code anomalies  

and identification of refactoring opportunities (Section 

3.4). They performed these tasks with support of ID and 

NID techniques. We choose the ID technique provided by 

Stench Blossom [3] for two main reasons: (i) it provides 

support to all ID features [6], as previously discussed 

(Section 2.2); and (ii) to the extent of our knowledge, it is 

the only robust solution that provides automated support 

for ID.  

We choose the NID technique provided by manual 

inspection due to it has been widely used in other 

comparative studies [10][3][4] of techniques for anomaly 

detection. In addition, this technique does not require 

automated detection, thereby providing no specific 

influence of a particular detection mechanism. Similarly, 

we have also not found any other automated detection 

technique that supports the same set of anomalies 

addressed by Stench Blossom. For instance, the 

automated detection proposed by van Emden and Moonen 

[13] provides support to only two code anomalies 

(Instanceof and Typecast). Conducting a comparative 

experiment against just these two code anomalies would 

produce quite limited results. Finally, it also provides us 

with a reference to analyze the impact of an automated ID 

technique. 

The comparison between ID and NID techniques 

allowed the analysis of whether particular characteristics 

of ID (e.g. early detection) bring apparent 

(dis)advantages. It is not the intent of this experiment to 

compare various ID techniques, such as the one realized 

by Stench Blossom. This choice is because, to the extent 

of our knowledge, there is no other robust automated 

solution that offers an interactive technique for supporting 

anomaly detection. Finally, many would consider ID and 

NID complementary rather than competitive techniques 

as they are naturally targeted at different development 

stages (Section 2.2). Although ID and NID can be used in 

a complementary way, they can also be used with the 

same purpose during a programming activity (e.g. 

analysis of code fragments). In the context of our 

experiment, the techniques for anomaly detection were 

evaluated with the same purpose: detection of code 

anomalies while browsing code elements.  

Regarding to the subjects of this study, we recruited 

two main groups: (i) postgraduate students and (ii) 

professionals developers. These subjects were selected 

based on the criteria of interest in participating of the 

experiment. We expected from subjects, at least, 

intermediate knowledge in Java and refactoring. 

However, we did not expect from subjects knowledge 

about code anomalies or the interactive detection 

technique used in the experiment. Due to space 

constraints, detailed description of subjects profile may be 

found online in our paper supplementary material [25]. 

3.4 Experiment Description 

The subjects performed tasks related to identification 

of code anomalies and refactoring opportunities. In these 

tasks, the subjects manipulated Java code files extracted 

from Java Core Library [25]. We have chosen this project 

because is an open source industrial system, making it 

easier to replicate this study by independent researchers. 

Four code files were selected according to the similar size 

and amount of the code anomalies. The experimental 

phase required two code files – one file for the ID task 

(e.g. file A) and the other to NID task (e.g. file B). This 

criterion was adopted because both files could be used in 

the tasks, regardless of the order, reducing their influence 

on the results of the experiment. Each experimental task 

was individually conducted with the first author as an 

observer of the experiment. It is also important to mention 

we already provided the environment with all the files 

and tooling support required to execute the experimental 

tasks. The maximum time each subject had available for 

executing the experimental tasks was 60 minutes. A 

detailed description of experimental tasks may be found 

online in our paper supplementary material [25]. Finally, 

we organized the experiment into three different phases, 

namely:  

Phase 1 – Pre-Experiment: Initially, the subjects 

answered a questionnaire to collect the necessary data for 

definition of subjects’ profile (Section 4). Then, the 

subjects received a material with the definition of eight 

(8) code anomalies supported by Stench Blossom, as well 

as an example of the occurrence of each one. A detailed 

description of code anomalies used may be found online 

in our paper supplementary material [25]. A deadline of 

15 minutes (maximum) was given for the subject to 

understand these definitions. This step was intended at 

leveling the knowledge of the subjects. Finally, the 

subjects underwent a training session about Stench 

Blossom and the Eclipse IDE version used in the 

experiment.  

Phase 2 – Identification of Code Anomalies: Subjects 

identified the occurrences of eight (8) different types  of 

code anomalies supported by Stench Blossom. The data 

related to identification of code anomalies were 

transcribed into a form. During the use of ID technique, 

the subjects could agree or disagree with the detections 

proposed by this technique. Thus, false positives arising 

from the ID technique could be omitted when subjects 

used their knowledge in making decisions about the 

existing anomaly instances. Two tasks were performed in 
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this experiment phase: one with the ID and another one 

with the NID. We computed for each task: the total (T) 

number of detected code anomalies (DCA), the number of 

true positives (TP) and the number of false positives (FP). 

The data obtained from these tasks will be used to 

evaluate the first and second hypothesis (H1 and H2) and 

the Section 4.1 provides its detailed description.   

Phase 3 – Judgments of Refactoring: Subjects 

performed judgments of refactoring using ID and NID 

techniques. This phase consisted in identifying of Feature 

Envy anomaly. We decided to focus on Feature Envy for 

this experimental phase, as this is the only code anomaly 

currently supported by the implementation of the 

Explanation View (Section 2.2). After the identification 

of Feature Envy, the subject should infer about the 

usefulness of applying a refactoring action. In positive 

case, the subject should answer the following questions: 

(i) how scattered is the anomaly in the analyzed code, (ii) 

how likely removing this anomaly and (iii) which 

refactoring actions are required. The aforementioned 

questions are directly related to judgments of refactoring 

[1][2]. The following concepts are required to understand 

this task: Ineffective Refactoring (IR) occurs when the 

developer positively infers about refactoring from an 

instance of Feature Envy anomaly, which has been 

considered a false positive. Effective Refactoring (ER) 

occurs when the developer positively infers about 

refactoring necessity from an instance of Feature Envy 

anomaly, which has been considered a true positive. The 

data obtained from these tasks will be used to evaluate the 

third hypothesis (H3) and its description can be seen in 

Section 4.2. 

 

3.5 Analysis Method 

We applied statistical analysis on the data obtained 

from experimental tasks. Such statistical analyzes were 

carried out with support of the R tool [27]. This tool 

provides means for calculating statistical tests considered 

in this study: (i) Wilcoxon signed-rank test [28], and (ii) 

paired T-Test [28]. The first one is applied to the values 

associated with the correctly identified anomaly 

instances. This test was selected since the data were not 

following a normalized distribution. The second one is 

applied to the values of recall and precision since the 

obtained measures were following a normalized 

distribution. The execution of the experimental tasks 

derived data for two samples: the sample with the aid of 

ID and the sample with the aid of NID technique. The 

aforementioned statistical tests can be applied since each 

observation in the first sample can be paired with one 

observation of the second sample. 

IV. RESULTS AND DISCUSSION 

In this section, we present the results of the 

experimental tasks described in Section 3.4. Each subject 

spent on average 45 minutes to execute the experiment. 

Therefore, the upper limit of one hour was enough for the 

subjects conclude the tasks. Whenever it is appropriate, 

statistical analyzes are presented. The first phase (Section 

3.4) of the experiment involved the application of a 

questionnaire aiming to determine the subjects’ profile. 

Table 3 summarizes the main characteristics of the 

subjects’ profile. Their profile meets our study 

assumptions since all subjects have at least intermediate 

knowledge about Java, detection of code anomalies and 

program refactoring. The following subsections present 

the key results and findings revealed by our study.  

Table 3. Results of the pre-experiment questionnaire  

Question Results 

Professional 

practice 

7 Subjects were postgraduate students and 7 

subjects were professional developers  

Experience time 

Half of the sample had between 5 and 8 

years of experience in software 

development 

Using IDE All subjects have used some IDE 

Java proficiency 
On a scale from 0 to 4 (*), 36% of subjects 

answered 2 and 57% of subjects answered 3 

Anomaly 

detection 

proficiency 

On a scale from 0 to 4 (*), approx. 80% of 

the subjects answered 1 or 2. 

Refactoring 

proficiency 

On a scale from 0 to 4 (*), approx. 60% of 

the subjects answered 3 or 4. 

(*) 0 means "not proficient" and 4 "very proficient" 

 

4.1 Identification of Code Anomalies 

The second phase involved the execution of the tasks 

related to identification of code anomalies using non-

interactive detection (NID) and interactive detection (ID) 

techniques. The tasks focused on analyzing the 

effectiveness of using ID on the detection of code 

anomalies. Table 4 describes the results per subject or full 

sample (FS) with respect to the detected code anomalies 

(DCA), true positives (TP), and false positives (FP).  

 

Table 4. Results of identification of code anomalies  

Subject 

NID 

Subject 

ID 

DCA TP 
FP 

DCA TP 
FP 

Developer 1 4 4 0 Developer 1 6 5 1 

Developer 2 7 6 1 Developer 2 15 13 2 

Developer 3 9 8 1 Developer 3 16 14 2 

Developer 4 6 5 1 Developer 4 9 7 2 
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Developer 5 10 8 2 Developer 5 11 9 2 

Developer 6 12 9 3 Developer 6 14 11 3 

Developer 7 6 5 1 Developer 7 5 5 0 

Total 54 45 9 Total 76 64 12 

Student 1 4 3 1 Student 1 10 8 2 

Student 2 4 4 0 Student 2 5 4 1 

Student 3 8 6 2 Student 3 12 9 3 

Student 4 5 4 1 Student 4 3 3 0 

Student 5 7 5 2 Student 5 10 7 3 

Student 6 5 4 1 Student 6 6 5 1 

Student 7 2 2 0 Student 7 8 6 2 

Total 35 28 7 Total 54 42 12 

FS Total 89 73 16 FS Total 130 106 22 

FS Average 
6,1 5,2 1,1 

FS Average 
9,3 7,6 1,6 

 

ID technique increases both true and false positives:  

We observed the subjects identified 22 false positives 

when using the ID technique. That is, the number of false 

positives is approximately 38% higher than the number of 

false positives (16) produced when subjects used the NID 

technique. Similarly, the subjects identified 106 true 

positives (i.e. anomalies correctly identified) based on the 

use of ID technique, while subjects identified 73 true 

positive based on the use of NID technique. Therefore, 

the use of ID increased in 45% the total of true positives 

by the subjects when identifying code anomalies. Finally, 

the data related to true positives generated with ID and 

NID techniques were statistically significant (p = 0.002, 

df = 12, z = 3.05, using a Wilcoxon signed-ranks test 

[28]).  

Aiming to provide an additional perspective on the 

effectiveness of the interactive detection of code 

anomalies, we also analyzed precision and recall 

measures. Therefore, we applied those collected measures 

in the equations defined in Section 3.1. The Table 5 

illustrates the results of these metrics for both ID and NID 

techniques. The precision and recall measures were 

calculated in order to address the research questions RQ1 

and RQ2. In addition, these results were used in order to 

test the hypotheses H1 and H2, respectively.  

ID increases recall:  When analyzing recall measures, 

we observed that, in average, the subjects using the ID 

technique achieved a score of 0.30, while the use of the 

NID achieved 0.21. Thus, the results represent a 

difference of approximately 30% in favor of the ID 

technique. Similar results could be observed when 

analyzing different samples (e.g. students or developers). 

For instance, the developers’ sample improves recall 

values in 40%, while the students’ sample improves recall 

values in 50%. Likewise, the data related to recall in this 

task through ID and NID was statistically significant (p = 

0.0013, df = 13, t = 4.06, using a Paired T-Test [28]) in 

the task of identification of code anomalies.  

We also found that recall suffers direct influence 

regarding the subjects’ working experience. The results 

allowed us to conclude the use of ID can directly affect 

the recall values. The use of ID implies the interaction of 

subjects with the anomalous code elements as they 

progressively analyze code fragments. Therefore, 

developers are able to achieve more coverage with ID 

regarding the correctly identified instances of code 

anomalies. Finally, we can confirm the first hypothesis 

(H1), since the use of ID led to better recall values 

compared to the use of NID. 

Table.5. Precision and recall  

Subject 
ID 

Subject 
NID 

P R P R 

Developer 1 0,83 0,20 Developer 1 1,00 0,16 

Developer 2 0,87 0,52 Developer 2 0,86 0,24 

Developer 3 0,88 0,56 Developer 3 0,89 0,32 

Developer 4 0,78 0,28 Developer 4 0,83 0,20 

Developer 5 0,82 0,36 Developer 5 0,80 0,32 

Developer 6 0,79 0,44 Developer 6 0,75 0,36 

Developer 7 1,00 0,20 Developer 7 0,83 0,20 

Average 0,85 0,37 Average 0,86 0,26 

Student 1 0,80 0,32 Student 1 0,75 0,12 

Student 2 0,80 0,16 Student 2 1,00 0,16 

Student 3 0,75 0,36 Student 3 0,75 0,24 

Student 4 1,00 0,12 Student 4 1,00 0,08 

Student 5 0,70 0,28 Student 5 0,71 0,20 

Student 6 0,83 0,20 Student 6 0,80 0,16 

Student 7 0,75 0,24 Student 7 0,80 0,16 

Average 0,80 0,24 Average 0,83 0,16 

Total Average 0,82 0,30 Total Average 0,84 0,21 

 

ID and NID techniques have similar precision: We 

observed the average of precision measures with ID was 

0.82, while the use of NID achieved 0.84. As opposed to 

recall values, the difference of precision measures with 

NID and ID was not significant. This finding is revealed 

when analyzing percentage values. We also realized the 

subjects’ working experience directly affected the results. 

The professionals’ sample achieved better precision 

values compared to the students’ sample. As previously 

discussed, although the use of the ID technique increases 

the number of false positive, it also tends to increase the 

number of true positive - which directly affect precision 

values. According to results illustrated in Table 5, there is 

no evidence to support that the subjects using ID have 

worse (or better) precision than subjects using NID 

technique. Therefore, we cannot confirm or refute the 

second hypothesis (H2).  
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The results indicated there is no negative impact when 

the interactive detection of code anomalies is performed 

progressively - i.e. while the developer is browsing or 

editing the code. Software developers are likely to benefit 

from detecting anomalies earlier, when they constantly 

receive feedback provided by ID. Moreover, the constant 

availability and higher amount of information through ID 

led developers to accept a higher number of anomaly 

instances. However, if the subject holds a higher level of 

working experience, he can be more confident to infer 

(i.e. accept or reject) about the suggestions of anomaly 

instances from ID. The data described in Table 4 allow us 

confirm this assumption. More experienced developers 

using ID obtained a lower number of false positives 

compared to the students (fewer working experience) 

using the same technique. In a similar way, developers 

identified a higher number of true positives compared to 

students. Finally, these results are similar to those 

presented in the work of Murphy-Hill and Black [3], as 

developers identify more true positives using ID 

compared to developers using NID technique. 

4.2 Judgments of Refactoring 

In the third phase (Section 3.4), subjects performed 

judgments of refactoring using non-interactive detection 

(NID) and interactive detection (ID) techniques. These 

tasks were performed in order to address the research 

question RQ3, which is validated by testing the 

hypothesis H3. In summary, we analyzed whether the 

subjects performed ineffective refactoring (IR) or 

effective refactoring (ER) related to occurrence of Feature 

Envy anomaly. Section 3.4 shown a detailed description 

of the judgments of refactoring. Finally, the Table 6 

illustrates results from the accomplishment of 

aforementioned tasks. 

Table 6. Results on judgments of refactoring  

Subject 
NID 

Subject 
ID 

IR ER IR ER 

Developer 1 - X Developer 1 X - 

Developer 2 - X Developer 2 - X 

Developer 3 - X Developer 3 - X 

Developer 4 - X Developer 4 - X 

Developer 5 - X Developer 5 - X 

Developer 6 - X Developer 6 - X 

Developer 7 X - Developer 7 X - 

Total 1 6 Total 2 5 

Student 1 X - Student 1 X - 

Student 2 - X Student 2 - X 

Student 3 - X Student 3 X - 

Student 4 - X Student 4 - X 

Student 5 - X Student 5 X - 

Student 6 - X Student 6 - X 

Student 7 X - Student 7 X - 

Total 2 5 Total 4 3 

FS Total 3 11 FS Total  6 8 

 

ID technique may increase IR: We verified the 

subjects performed 3 ineffective refactoring when using 

the NID, while the subjects using the ID performed 6. 

That is, the use of ID occasioned a growth of 50% in the 

ineffective refactoring performed by subjects. Moreover, 

when analyzing the results achieved by the developers’ 

sample, subjects performed only 1 ineffective refactoring 

when using NID, while 2 ineffective refactoring were 

performed when ID was employed. The same proportion 

of growth (i.e. 50%) occurs in the results obtained from 

students’ sample. We noticed 2 ineffective refactoring 

were performed when the NID was used, while subjects 

using the ID performed 4. 

In summary, we observed the subjects using ID are 

likely to perform more ineffective refactoring compared 

to subjects using NID technique. Moreover, we could 

observe that working’ experience also influences the 

results of this task, since the developers performed 50% 

fewer ineffective refactoring than the students. During the 

second experimental phase, we observed most of the false 

positives were related to occurrences of the Feature Envy 

anomaly. Furthermore, the students using ID pointed out 

the majority of false positives. This fact led us to 

conclude occurrences of false positives might be directly 

associated with developers’ working experience. 

Moreover, the use of the ID technique for the anomaly 

detection also directly affects the refactoring actions.  

Concluding, we can refute the third hypothesis (H3) 

by analyzing the collected data associated with judgments 

of refactoring (Table 6). The use of ID might induce 

developers to perform ineffective refactoring actions 

because the existence of the anomaly instance that could 

indicate the refactoring action may be untruthful. In short, 

if the developer performs refactoring on a false positive 

related to some anomaly, the effort to accomplishment 

this task might not contribute to improving the system 

maintainability. 

 

V. THREATS TO VALIDITY 

Sample size and diversity: Fourteen subjects 

performed the controlled experiment. The results may 

have direct influence from size of the sample and the 

subjects’ working experience on anomaly detection and 

refactoring. To mitigate this threat, we choose a sample 

comprising by students and developers. Furthermore, we 

conducted training sessions in order to leveling the 

knowledge of subjects with respect to these topics.  

Experiment Complexity: Other threats to validity are 

related to: (i) the difficulty in understanding code files 
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chosen for the experiment, and (ii) the nature of the 

selected experimental tasks. With the aim of minimizing 

the first threat, the code files were selected according to 

the size and time available for each task. Furthermore, we 

performed a pilot experiment in order to adjust the time 

required to perform these tasks. Aiming at mitigate the 

second threat, one of the paper’s authors monitored all the 

experimental tasks. In addition, subjects received 

instructions for completing the questionnaires and 

demonstrations prior to the completion of the experiment 

tasks. 

Integrated Development Environment: We used the 

version 3.3 (Europe) of the eclipse IDE due to 

compatibility problems of Stench Blossom. Thus, the 

subjects’ experience in using this IDE version may have 

been harmed because it was a version older than the one 

being used by developers nowadays. However, 

observations of the subjects did not lead us this 

phenomenon had any influence on their performance. In 

addition, aiming to minimize this threat, we provided 

specific training on the use of the Eclipse IDE 3.3.  

Sample of Code Anomalies: Finally, we restricted 

subjects to discussing only eight types of code anomalies. 

In contrast, Fowler has cataloged a list with more than 

twenty code anomalies [1]. Therefore, the eight code 

anomalies supported by Stench Blossom may not 

necessarily be a representative sample of anomalies found 

in certain programs. Likewise, we only focused on one 

code anomaly in the Explanation View - Feature Envy 

anomaly. Therefore, subjects’ judgments of refactoring 

may be different for other kinds of code anomalies. 

 

VI. RELATED WORK 

This study represents a first independent assessment 

of interactive detection (ID) of code anomalies. We have 

chosen the ID technique supported by the Stench Blossom 

(Section 2.2). This technique was proposed and 

implemented by Murphy-Hill and Black [3]. We have 

chosen this particular technique for three main reasons: (i) 

it provides support to all main features of an ID technique 

[6]; (ii) it offers automated robust support for ID; and (iii) 

to the extent of our knowledge, it is the only robust 

solution that provides automated support for ID. 

In our evaluation, we compared the effectiveness on 

detection of code anomalies with ID  and NID techniques. 

Mäntylä et al. [10] also conducted an empirical evaluation 

comparing two different techniques. However, they did 

not evaluate the ID technique for anomaly detection. 

Instead, they compared manual inspection in contrast to 

semi-automatic technique (i.e. both techniques were non-

interactive). Since ID technique provided by Stench 

Blossom presents a visualization environment, we seek in 

the literature related works that also present use of these 

environments in detection of code anomalies. Parnin et al. 

[11] evaluated the impact of visualization techniques in 

the anomaly detection. However, they did not evaluate the 

use of ID-sensitive visualization of code anomalies.  

None of the aforementioned studies presented 

information about false positives found from the use of 

different detection techniques. Moreover, none of them 

analyzed the impact of ID on the identification of 

refactoring opportunities and their consequences. 

Although Macia et al. [12] evaluated the number of false 

positives on anomaly detection, the technique used by 

them does not support ID. Finally, only Murphy-Hill and 

Black [3] evaluated the use of their ID technique. 

However, they prioritized aspects related to usability 

guidelines such as availability, lucidity and context 

sensitiveness. Consequently, they did not observe if the 

ID technique improved the effectiveness on anomaly 

detection and, consequently, on judgments of refactoring. 

 

VII. CONCLUSION AND FUTURE WORKS 

The use of interactive detection (ID) technique can 

lead developers to early identify opportunities for 

refactoring actions and hence, bring significant benefits to 

system maintainability. Using ID: (i) developers can 

perform other programming activities in source code 

concomitantly to anomaly detection; (ii) developers are 

constantly aware about the anomaly instances when 

analyzing different code fragments; and (iii) developers 

tend to find early a higher number of anomaly instances 

due to the amount and availability of information related 

to code anomalies.  

Although developers using ID may identify more 

anomaly instances found in their code, its use may also 

increase the number of false positives in early anomaly 

detection activities. Findings of our study point out that 

these differences of ID and NID occur for different 

reasons. First, the amount and availability of information 

may confuse the developer in the task of interactive 

identification of code anomalies. Second, the lack of 

developers’ working experience directly contributes to a 

higher acceptance of suggestions of anomaly instances 

yielded by an ID technique. 

The effectiveness measurements also revealed that ID 

do not considerably improve the precision of early 

anomaly identification. However, we realized the 

subjects’ working experience could directly affect the 

results associated with this measure. The higher the 

subjects’ working experience, the higher is the values 

observed for precision. Analogously, the subjects’ 
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working experience also directly affected the recall 

measures. Actually, the subjects’ working experience 

improved recall values in a greater proportion compared 

to values associated with precision.  

Finally, new experiments about ID effectiveness can 

be performed using a different set of code anomalies with 

different levels of granularity (i.e. anomalies that affect 

different code elements, such as packages, classes and 

methods). This recommendation is even more relevant for 

the second phase of the experiment (Section 3.4), which 

focused on the occurrence of the Feature Envy anomaly. 
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