
International Journal of Advanced Engineering Research and Science (IJAERS)                                [Vol-7, Issue-10, Oct- 2020] 

https://dx.doi.org/10.22161/ijaers.710.5                                                                           ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                               Page | 36  

Development of proxy models for petroleum 

reservoir simulation: a systematic literature 

review and state-of-the-art  

Luciana Maria Da Silva1, Guilherme Daniel Avansi2, Denis José Schiozer3 

 

1Department of Energy of the Faculty of Mechanical Engineering, University of Campinas, Brazil and Department of Mathematical 

Sciences, Durham University, UK 
2,3Department of Energy of the Faculty of Mechanical Engineering, University of Campinas, Brazil  

 

Abstract— Proxy models are derived mathematical functions developed as substitutes for reservoir flow 

simulators. Several types of proxy models are reported in the literature, for instance, response surface 

models, surrogate models, or metamodels. These models are fast methods, recommended for their efficient 

response time to approximate model responses and, therefore, useful in the decision-making process 

related to reservoir management. These studies focus on modelling a limited set of factors, applications, 

and case studies of any technique. A systematic literature review (SLR) is performed to gather the aspects 

prompting the modelling of proxy models in the literature and state-of-the-art. For this, a set of search 

keywords with appropriate string were utilised to extract the most important studies that satisfied all the 

criteria defined and classified under journal and conference paper categories. The papers were condensed 

after removing redundancy, repetition and similarity through a sequential and iterative process. From the 

analysis carried out, several gaps were identified, especially during the proxy model construction. Proxy 

models have already been discussed in petroleum engineering as a representation of the real system of 

reservoir flow simulator software. However, the proxy model response is faster but has yet to establish the 

issues of uncertainty in the outputs. There is a need for the integration of fast methods and reservoir 

simulators which can improve and accelerate results within acceptance criteria and accuracy in decision-

making processes related to reservoir management.  

Keywords— Petroleum Engineering, Proxy Model, Reservoir Simulator, State-of-the-art, Systematic 

Literature Review. 

 

I. INTRODUCTION 

The decision analysis applied to the development and 

management of petroleum fields involves risk due to 

several uncertainties, mainly in the reservoir and fluid 

parameters, economic model, operational availability, and 

high computational cost. A new methodology based on 12 

steps for integrated decision analysis considering reservoir 

simulation, risk analysis, history matching (HM), 

uncertainty reduction techniques, representative models, 

and selection of production strategy under uncertainty, 

which is necessary for the decision-making process was 

developed by [1]. The authors used a low-fidelity reservoir 

simulation model directly to predict field performance and 

quantify risk. 

High (HFM), Medium (MFM), and Low (LFM) 

Fidelity Models assume reservoir conditions and 

characteristics and physical laws (flows in porous media), 

while proxy models do not. HFM are models whose 

degrees of representativeness of geological, geophysical, 

fluid information, and recovery process are notable with 

high accuracy and precision. MFM are models whose 

geological, geophysical, fluid information and recovery 

processes have already undergone simplifications to 

reduce the degree of accuracy and computational time. 

These are used in production forecasting processes (mainly 

probabilistic) or those that demand hundreds and even 

thousands of simulations. LFM are models whose 

geological, geophysical, fluid information, and recovery 

processes have already undergone significant 

simplifications and their precision, accuracy and 

computational time are low. More details in [2]. 

A proxy model also called surrogate model, metamodel 

or response surface is a representation of a real system or 
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its simulations [3]. It becomes advantageous, especially 

when the direct evaluation of the system is either 

impossible or involves a high computational cost to 

simulate [4]. Therefore, a proxy model is considered to be 

an efficient substitute for the simulation tool at higher 

levels of reservoir study including uncertainty analysis, 

risk analysis and production optimisation [5], and also to 

elaborate the risk curves [6], especially time-consuming 

simulators [3]. In other words, in cases where proxy 

models can effectively represent important output 

parameters, they can be used as an adequate substitution 

for full reservoir simulators [7]. 

Proxy model constructions are held as mathematical 

derived functions, which imitate the output of a simulation 

model to selected input parameters [7]. According to the 

authors [6] and [8], if reservoir simulation studies were 

conducted with mathematical and statistical techniques, 

proxy models could estimate how the variation of input 

factors affects reservoir behaviour with a relatively small 

number of reservoir simulation models. 

The purpose of the proxy models is to reduce the 

number of simulated models to evaluate a determining 

search space. It may lose a certain degree of accuracy due 

to the process of proxy modelling [9], but there is a 

reduction in computational time. Due to these reasons, 

obtaining an accurate proxy model is usually critical, and 

the model discrepancy has to be taken into account [10]. In 

petroleum exploration and production, the decision-

making process, history matching, production strategy 

optimisation and economic evaluation of oil field must 

consider the risk involved through quantifying the impact 

of uncertainties on the performance of the petroleum field 

[6]. 

Numerous practical applications in uncertainty 

quantification, history matching, optimisation, and 

forecasting are increasingly involved in proxy modelling. 

The number and diversity of the proxy models 

development have widely increased as substitutes for 

reservoir flow simulators. On the other hand, a lack of 

better choice of the objective function and the methods 

able to correlate input and output are identified as the 

typical characteristics, which cause quality issues that 

might adversely influence the proxy models development. 

Development of proxy models requires considering 

various factors, such as the selection of statistical and 

mathematical models, computational time, uncertainty 

quantification so forth. The initial knowledge on the 

effects of these factors on the development is fundamental 

to obtain an accurate model. Hence, a wide variety of 

proxy model application can be found in petroleum 

engineering to investigate the effect of these factors on 

proxy modelling. However, each study investigates a 

limited set of particular input and, as a result, an extensive 

summary of existing literature on petroleum engineering is 

a valuable source for researchers in proxy model 

development. 

This study aims to present the aspects identified in the 

studies analysed and thus present the current state of the 

research. A systematic literature review (SLR) is 

performed to gather the elements prompting the modelling 

of proxy models in the literature and state-of-the-art in 

petroleum reservoir engineering. For this, a set of search 

keywords with the appropriate string were utilised to 

extract most important studies that satisfied all the criteria 

defined in the relation between proxy model developments 

and classified under journal and conference paper 

categories. The information obtained in SLR and state-of-

the-art is useful for industry experts and researchers. 

This paper is structured as follows: Section II presents 

the background studies of the proxy model; Section III 

provides an overview of research methodology; Section IV 

summarises the results, which were essential to answer our 

research questions; Section V highlights the discussion 

showing the gaps we identified for future research and the 

state-of-the-art; Section VI presents the conclusion of the 

paper. 

 

II. BACKGROUND STUDIES OF PROXY MODEL 

There were no systematic reviews that originated under 

the modelling of proxy models or aspects in petroleum 

engineering. From the literature gathered, the authors 

searched and examined the studies performed between the 

years 2007 and 2017 in digital libraries to develop the 

SLR. Still, we do not limit to this years to the state-of-the-

art aspects showing aspects until 2020. 

Development of proxy models has been performed on 

various models for reservoir flow simulation, which can be 

used for forecasting, optimisation of production, history 

matching, characterisation of reservoir properties, 

uncertainty and risk analysis, and production strategy 

selection. These proxy models can be polynomial 

regression models, ordinary kriging models, artificial 

neural networks (ANNs), and radial basis functions 

(RBFs), response surface methodology (RSM), design of 

experiment (DE), and other.  

We can find in the literature a wide range of proxy 

model development for application in petroleum 

engineering, for example, a new approach to improve 

Bayesian HM [11, 12]. The authors [13] integrated a 

framework for field-scale modelling, HM, and robust 
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optimisation of field scale low salinity waterflooding 

(LSW). An approach using the SRM for optimisation [14-

19]. The authors [20] addressed the decision-making 

process over the determination of oil & gas production 

strategies.  

Some papers applied ensemble Kalman Filter (EnKF) 

with an objective, for example, the authors [21-24] for the 

analysis of uncertainty quantification and optimisation 

method, [25, 26] to automatise HM, [27] for estimation of 

channel permeability in a bimodal distribution, and [28] 

for the integration of well-test data into heterogeneous 

reservoir models. The authors [29] combined EnKF with 

Markov Chain Monte Carlo (MCMC) to obtain a more 

accurate characterisation of uncertainty; [30] combined 

EnKF with genetic algorithm. 

The authors [31] made the comparison of SRM with 

least square support vector machine. Use of experimental 

design to develop response surface [32-41], integrated with 

Monte Carlo simulations to characterise the response 

surface and to estimate the uncertainty [42, 43]. 

Application of Bayesian multi-stage MCMC approach, 

based on an approximation with a linear expansion to 

reduce high computational costs [44], more accurately 

obtained model uncertainty and also assists in production-

forecast business decisions [45], with Bayesian workflow 

based on two-step MCMC inversion [46]. 

In [47] was presented a method to select a subset of 

reservoir model computing the statistics (P10, P50, P90) of 

the response of interest; use of the genetic algorithm to 

improve the process of optimisation [48]. Application of 

an approach with fuzzy analytical hierarchy process for 

compositional simulation studies of the CO2 injection 

process [49]. The authors [50] developed a semi-analytical 

fast model for optimal field development strategy. The 

authors [51] used principal component analysis (PCA) and 

elastic gridding. Application of a robust reservoir 

simulator with the application of kriging models [10; 52, 

53]; in a closed-loop [54, 55]. Combination of Karhunen-

Love (KL) expansion and probabilistic collocation method 

for uncertainty analysis [56]. Development of an emulator 

utilised Bayes Linear [23, 57]; development of a proxy 

model to predict cumulative oil production and steam 

injection profiles [58]. 

The authors [7, 59] proposed the application of 

polynomial chaos proxy efficiently sample with MCMC 

and ANNs, respectively. Application of ANNs in the form 

of gene expression programming is applied through an 

extensive statistical manner [60] in HM [61-63]. In recent 

years, ANN training has been accomplished to identify the 

non-linear relationships between various input and output 

variables [3, 5; 64-69] used ANNs integrated to 

polynomial regression for risk analysis and forecasting. 

 

III. PROCEDURE FOR SYSTEMATIC 

LITERATURE REVIEW 

SLR is the best method available to generate scientific 

evidence based on the summary of the significant 

publications concerning a specific topic or research 

question [70]. Due to this, the methodology was 

undertaken based on [71] to survey the existing knowledge 

about the development of proxy models for petroleum 

reservoir simulation. The SLR process applied can be seen 

in Fig. 1.  
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Fig. 1 Workflow with each step achieved in SLR 

 

The authors performed the planning of the review, 

from which the research problem, objective and 

questions were defined (steps 1 and 2). Therefore, we 

obtained the search and review protocols. Afterwards, 

we performed the definition of the primary searches (step 

3) based on search string (step 4), database sources (step 

5), inclusion and exclusion criteria (step 6), resulting in 

the general search in the entire database (step 7). From 

the results of the examination, the duplicate articles were 

eliminated (step 8), obtaining a list of selected papers 

which were read by title, abstracts, and keywords (step 

9). After the partial reading, we got a list with the 

selected final articles which were thoroughly read and 

analysed (step 10).  

We specified the details of the SLR methodology in 

the following subsections: research questions, search and 

review protocol, define the search string, identify the 

database sources, and define the inclusion and exclusion 

criteria. The extraction and synthesising concerning the 

general search in the entire database, numbers of 

eliminated duplicate articles, numbers and criteria of 

reading publications by title, abstract and keywords, and 

numbers of reading and analysed full-texts are in Section 

4 (step 11). 

3.1 Research problem and questions 

The identification of the aspects of proxy model 

development requires a clear and explicit analysis of the 

research problem and theoretical concept (step 1). From 

this, we formulated research questions for this SLR (step 

2): 

RQ1: How many proxy model studies have been 

performed from 2007 to 2017? 

RQ2: What were the research topics addressed to the 

publication? 

RQ3: What were the problems investigated and presented 

in the literature to the development of the proxy model? 

RQ4: Why use the proxy model? 

About RQ1, we identified that the term “systematic 

literature review” was not in common usage in the 

petroleum area. In contrast, in Information and Software 

Technology, Chemistry, Business Administration and 

Medicine, it is diffused. The authors [71] highlight that 

there are rigorous example literature reviews before 2004 

in the software engineering area. Therefore, based on RQ1, 

we identified the number of articles published per year, the 

journals, conferences, and database which published about 

the development of proxy models. Concerning RQ2 the 

aspects of the petroleum engineering topic area and the 

model-based decision were considered (closed-loop 

reservoir development and management – CLRDM) 

developed by [1]. For RQ3 the problems in the decision-

making process for petroleum reservoir simulation related 

to the CLRDM model were considered, such as, overcome 

computational costs, computational time demand and 

performance of a reservoir simulator, reduced human 

resources and fidelity model. In RQ4, we considered the 
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proxy models and emulators identified during the reading 

of articles. 

3.2 Search and Review Protocol 

A search and review Protocol is essential in all SLR to 

guarantee the efficiency of the selected studies. For this, it 

is necessary to define the research problem in parallel with 

the research objectives and questions, as shown in Fig. 1 

(steps 1 and 2).  

The protocol for this review depended on step 3 being 

developed in three stages (from step 4 to step 6): P1: 

Define the search string, P2: Select the literature database, 

and P3: Define the inclusion and exclusion criteria, this 

defines the protocol that was used to perform the search in 

the sources defined, which will be explained in the 

subsections: define the search string, identify the database 

sources, and define the inclusion and exclusion criteria. 

3.3 Define the search string 

SLR is a known technique for reviewing the literature 

with vast search information of the subject in the 

discussion from all relevant sources. Due to this, a 

systemic method to formulate search keywords was 

defined, considering the following issues:  

a) Setting of significant terms based on the research 

question; 

b) Setting of similar words for significant terms; 

c) Setting of relevant keywords in any applicable studies; 

d) Using Boolean operators “OR” and “AND” as an 

alternative to linking terms. 

We defined the search string with focus on related 

studies of petroleum simulator and proxy model, i.e., an 

exact string “((“oil” OR “petroleum”) AND “uncertainty” 

AND “simulator”)”. The first part of the string was the 

focus area of the research. We included the words 

“uncertainty” and “simulator” to disqualify studies which 

are related to fields different from petroleum engineering. 

The authors opted not to utilise the words proxy model 

as the exact phrase since, in most of the search queries, 

there are numerous studies in which proxy models are 

related as surrogate, metamodel or response surface. If 

“proxy model” had been utilised alone, the search would 

lose significant results that use the terms: surrogate, 

metamodel or response surface. 

 

3.4 Identify the database sources 

To perform the SLR and to find the relevant studies, 

we searched the following seven major electronic libraries, 

six general and one specific to the area of petroleum 

engineering.  

(1) ACM Digital Library (http://dl. acm.org) 

(2) IEEE Xplore (http://ieeexplore.ieee.org) 

(3) ScienceDirect (http://www.sciencedirect.com) 

(4) Scopus (http://www.scopus.com) 

(5) SpringerLink (http://link.springer.com) 

(6) Web of Science (http://apps.webofknowledge.com) 

(7) OnePetro (https://www.onepetro.org) 

In this research, we did not select the papers manually, 

and for this selection, we used on automatic selection 

criteria (scripts in Python language) developed by [72]. 

 

3.5 Define the inclusion and exclusion criteria 

The definition of the inclusion and exclusion criteria 

was based on the determination of an objective and 

question research. We applied the inclusion and exclusion 

criteria in the resulting publications, after eliminating the 

duplicated articles and identifying which would be 

relevant to this SLR. Table 1 shows the inclusion and 

exclusion criteria considered in the database source. 

We initially applied the inclusion and exclusion criteria 

in the entire database (step 7). The first criterion 

considered were articles in the English language, published 

from 2007 to 2017, peer-reviewed publications and 

whether their abstract contained any word of the string. 

After the search finished generating the list of articles, we 

used the string to analyse the full papers. If at least one 

term of the string had an association with the title, 

keywords and abstract, we included the article in the 

significant study list. For duplicated articles in multiple 

databases, we removed them and used one copy in the 

analysis (step 8). After, in step 9, in the inclusion and 

exclusion criteria process, we read the title, abstract and 

keywords to applicate the five assessments (Table 2). We 

generated these assessments to analyse the applicability 

and development of articles as exclusion criteria. 

 

Table 1: Inclusion and exclusion criteria for the analysis of articles selected in the database. 

Considered Criteria 

Inclusion Exclusion 

Period of publication from 1 January 2007 to 31 December 

2017  

Duplicated publications of the same study in more than one 

database 
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Publications published in the English language Non-English Language publication 

Publications that were peer-reviewed Publications without bibliographic information 

Publications which address proxy model and reservoir flow 

simulators software 

Publications which do not address proxy model or only 

include reservoir flow simulator software 

Publications that focus on the development of the proxy 

model 

Publications that only identify the technological aspects of 

the tools used 

Publications that presented the keywords which belong to the 

string determined in this SLR 

Publications that do not present the keywords which belong 

to the string determined in this SLR 

Journal with Scimago (SJR) ≥ 0.2 or JCR ≥ 0.5 and 

Conference (peer-reviewed) 

Other knowledge of the area 

 

Table 2: Five assessments utilized for partial analysis of the articles. 

Assessment Description 

1 The articles address reservoir characterization and/or uncertainty and/or optimization and/or risk and/or history 

matching and/or forecasting, it works with reservoir simulator software, but it did not develop a proxy model 

or apply 

2 The articles were applied in another area of knowledge, or they only mentioned reservoir simulator software  

3 Revision article: present difficulties to be reproduced, being applied to specific parameters without a new 

technique development 

4 Description of the combination of techniques in oil reservoir with reservoir simulator software 

5 Identify the technological aspects of tools used 

 

As an initial step, a general search was made, which 

was inside the inclusion criteria but was outside the scope 

of five assessments. It is essential to highlight that; this 

application is to analyse the significant researches which 

will be adequate to answer all RQs. Subsequently, we 

excluded various papers. And we selected 117 articles to 

read them thoroughly. 

In step 10, the full reading of the selected articles, we 

generated nine assessment questions for data extraction, 

from QE1 to QE8. An assessment question “Yes(Y)” = 1, 

“Partly(P)” = 0.5, “No(N)” = 0 or “Unidentified (U)” was 

also included to evaluate the contribution of each article 

during the proxy definition and construction. Besides, 

some articles may have a more straightforward proxy 

model development, focusing on application without many 

details and, because of this, various papers were 

considered unrelated to the development of proxy models, 

after reading the full article. 

QE1: What was the method used for data sampling? 

QE2: What was the type of proxy model performed? 

QE3: What was the objective function used? 

QE4: Was there any performance addressed to 

computational time? 

QE5: What were the aspects additionally addressed in the 

article? 

QE6: What were the problems presented in the article? 

QE7: What was the focus of the article analyzed? 

QE8: Was there any article relevant to the development or 

application of proxy models? 

Concerning QE1, when the method used for data 

sampling is explicitly defined (Y), it is implicit (P), or it is 

not defined or cannot be readily explicit (N). For QE2, 

when the proxy models performed are explicitly (Y), they 

are implicit (P), or they are not defined or cannot be 

readily explicit (N). About QE3, if the objective function 

is explicitly defined (Y); it is implicit (P); it is not defined 

or cannot be expressly identified (N). For QE4, if the 

performance addressed was defined for proxy model 

development or applied the modelling proposed (Y), it was 

defined for reservoir numerical simulator (P), or it was not 

implemented (N). Concerning QE5, the additional aspects 

are explicitly described (Y); they are implicit (P), or they 

cannot be expressly identified (N). For QE6, the problems 

presented are explicitly defined (Y); they are implicit (P), 

or they are not or cannot be expressly specified (N). For 

QE7, article approached modelling or experiment of the 

proxy model (Y); it was an application, literature review or 

technique (P); the paper analysed cannot be explicitly 
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identified (N). For QE8, the article approached obtained a 

score of >4.0 (Y); it got a score of ≤ 4 (N). For all 

questions, we considered (U) in case the information not 

specified. Table 3 presents the keywords considered in the 

article as an answer to all questions. 

 

IV. RESULTS  

This section presents the results (step 11), which we 

divided into three parts: perform a general search in the 

entire database (step 7) and the article selection process 

(steps 8 and 9); results from article reading and 

classification (step 10); quality factors. 

 

4.1 Perform a general search in the entire database and the 

article selection process 

We developed an SLR to gather the aspects prompting 

proxy model development in the literature. For this, we 

utilised a set of search keywords with appropriate string to 

extract the essential researches that satisfied all the criteria 

defined and classified under journal and conference paper 

categories, in seven scientific electronic library databases, 

resulting in 4,687 publications from January 2007 to 

December 2017. We showed the distribution of articles 

and the types (Journal and Conference) in each database in 

Fig. 2. 

Table 3: Defined answer for application in reading the final articles 

QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 

Random Multivariate 

Kriging 

Np Applied in 

metamodel 

developed 

Uncertainty 

analysis 

Computational 

Time 

Literature 

Review 

Yes 

Stratified Artificial 

Neural 

Network 

Wp Applied in a 

simulator used 

History 

Matching 

Computational 

resource 

Application No 

Systematic Response 

Surface/ 

Surrogate 

NPV Applied the 

modelling 

proposed 

Reservoir 

Characterization 

Type of data Technique - 

Cluster Fuzzy Logic ROI No 

measurement 

implemented 

Optimization Unidentified Modelling - 

Rank Bayesian Capillary 

pressure 

Unidentified Production 

Strategy 

Selection 

- Experimental - 

Unidentified Kalman Filter Others - Risk Analysis - - - 

- Experimental 

Design 

Unidentified - Unidentified - - - 

- Other 

metamodel 

- - - - - - 

- Unidentified - - - - - - 
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Fig. 2 Results obtained from string application in the 

databases; in red - the conference numbers and in blue - 

the journal numbers 

 

It is possible to see the results of the selected articles in 

Fig. 2, a total of 4,687 papers, where 3,390 were published 

in journals and 1,297 in conferences. Fig. 3 shows the 

results of each step of article selection and the percentages 

of each publication. From the 4,687 publications obtained, 

we applied the exclusion and inclusion criteria process and 

resulted in 317 usability publications (in blue), which 

represents 6.76% of the selected publications per database. 

We applied a sequential and iterative approach (python 

script), and we condensed the publication removing 

redundancy, repetition and similarity (in red), which 

represented 31.55%. The publications excluded they were 

in multiple databases. We reduced the publications for the 

reading of title, abstract and keywords, and after that, we 

removed 100 publications (46.08%) based on the five 

assessments shown in Table 2. Finally, we obtained 117 

papers to read them thoroughly, representing 53.92% (in 

green). 

 

Fig. 3 The number of searches in the database in each 

step. In blue- the inclusion and exclusion criteria 

process; in red- the phase after removing redundancy 

and repetition; in green- the articles analysed. 

 

Concerning the final process of selecting the 

publications, we initially worked with seven databases. In 

the chosen article process, only four databases returned 

publications. OnePetro electronic library produced the 

highest number of publications (full reading). Fig. 4 shows 

the distribution of pre-selected and selected publications 

over the years, which returned the string application in this 

SLR. 

Fig. 4 shows the distribution of publications per year; 

the blue axis shows the quantity of pre-selected 

publications, and the red axis indicates the number of 

selected publications. About the selected publications, it is 

possible to observe that the years 2008 and 2014 presented 

the highest number of publications. In analyzing the 

numbers obtained in 2008, 10 publications were in 

conferences while seven publications were in journals. In 

contrast, 12 and 7 publications were published in 

conferences and journals in 2014, respectively. We noticed 

that in 2017, one paper was obtained from the conference 

while eight publications in journals. Other reasons for the 

changes over the years, we considered only peer-reviewed 

publications, and the journal must have SJR ≥ 0.2 or JCR 

≥ 0.5 and focus on the development of proxy models in the 

petroleum engineering area. We analysed the barrel price 

of crude oil (Brent) in dollars [73] and observed that when 

the publication numbers increased, the price per barrel 

reduced. We performed the Pearson correlation with a 5% 

significance level. The Pearson correlation between the 

cost of each barrel and the selected article numbers was -

0.65 (ρ < 0.031). 

 

 

Fig. 4 Distribution of articles per year in the process of 

selection. In the blue - pre-selected article process and, 

in the red - selected article process. 

 

4.2 Results of reading and classification of articles 

The authors developed nine assessment questions and 

defined answer for application in reading the final articles 

presented in Section 3.5. Table 4 shows the classification 

of the 117 publications selected with the percentage-based 

in each assessment question (Section 3.5). 

Table 4 presents the classification of the 117 

publications selected about each assessment question 
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(Table 3). Concerning QE1, the method most used for data 

sampling is a random sample, at 63.25%. To QE2, we 

observed that each ANN and RSM presented 11.96% in 

proxy model development. QE3 showed that the most 

utilized objective function was the NPV, at 23.08%. 

Concerning QE4,  the authors used more performance on 

the modelling proposed. About QE5, which refers to the 

additional aspects, the one most used was “optimization” 

and “history matching,” which are essential parts of a 

reservoir process that highly need proxy models. QE6, the 

most detected problem is of computational time, while 

QE7 shows that the focus of the article is mostly on 

“application”, at 47.01% of publications.  

Table 5 shows the results obtained from 40 

publications selected for full reading by score obtained, 

and the papers presented only study application or 

technique application. In some cases, it was not possible to 

identify the procedure used to model the proxy, totalising 

34.19% of 117 publications selected. In a total of 32 

publications, it was not possible to identify the modelling 

on the proxy model.  

 

 

Table 4: Classification of the 117 publications selected concerning each assessment question 

QE Assessment question for data extracted Answer Quantity (%) 

1 What was the method used for data sampling? 

Random 74 63.25 

Stratified 5 4.27 

Systematic 2 1.71 

Cluster 3 2.56 

Rank 9 7.69 

Unidentified 24 20.52 

2 What was the type of proxy model performed? 

Multivariate Kriging 6 5.13 

Artificial Neural Network 14 11.96 

Response Surface/Surrogate 14 11.96 

Fuzzy Logic 2 1.71 

Bayesian 8 6.84 

Kalman Filter 10 8.55 

Experimental Design 6 5.13 

Other metamodels 31 26.50 

Unidentified 26 22.22 

3 What was the objective function used? 

Np 6 5.13 

Wp 2 1.71 

NPV 27 23.08 

ROI 1 0.86 

Capillary pressure 3 2.56 

Others 41 35.04 

Unidentified 37 31.62 

4 
Was there any performance addressed to 

computational time? 

Applied in metamodel developed 18 15.38 

Applied in a simulator used 6 5.13 

Applied the modelling proposed 56 47.86 

No measurement  8 6.84 

Unidentified 29 24.79 
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5 
What were the aspects additionally addressed in 

the article? 

Uncertainty analysis 14 11.97 

History Matching 29 24.78 

Reservoir Characterization 10 8.55 

Optimization 31 26.49 

Production Strategy Selection 5 4.27 

Risk Analysis 14 11.97 

Unidentified 14 11.97 

6 What were the problems presented in the article? 

Computational Time 76 64.96 

Computational resource 9 7.70 

Type of data 16 13.67 

Unidentified 16 13.67 

7 What was the focus of the article analyzed? 

Literature Review 1 0.86 

Application 68 58.12 

Technique 3 2.56 

Modelling 22 18.80 

Experimental 23 19.66 

 

Table 5: Result quality scores of selected publications with a score of ≤ 4.0 

Number Publication QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8(Score) 

1 [74] 0.0 0.0 0.0 0.0 0.0 1.0 0.5 1.5 

2 [75] 0.0 0.0 1.0 0.0 0.0 0.0 0.5 1.5 

3 [76] 0.0 1.0 0.0 0.0 0.0 0.0 0.5 1.5 

4 [77] 0.0 0.0 0.0 0.0 1.0 0.0 0.5 1.5 

5 [78] 0.0 0.0 1.0 0.0 0.0 0.0 1.0 2.0 

6 [79] 0.5 0.0 0.0 1.0 0.0 0.0 1.0 2.5 

7 [80] 0.0 0.0 0.0 0.0 1.0 1.0 0.5 2.5 

8 [81] 0.0 1.0 0.0 0.0 1.0 0.0 0.5 2.5 

9 [82] 0.0 0.0 1.0 0.0 0.0 1.0 0.5 2.5 

10 [83] 0.0 1.0 0.0 0.0 0.0 1.0 0.5 2.5 

11 [84] 0.5 0.0 0.0 0.5 0.0 1.0 0.5 2.5 

12 [85] 0.0 0.0 0.0 1.0 0.0 1.0 0.5 2.5 

13 [86] 0.0 0.0 0.0 0.0 1.0 1.0 0.5 2.5 

14 [87] 1.0 0.0 0.5 0.0 1.0 0.0 0.5 3.0 

15 [88] 0.5 0.0 0.0 1.0 1.0 0.0 0.5 3.0 

16 [89] 0.5 0.0 1.0 0.0 0.0 1.0 0.5 3.0 

17 [90] 0.0 0.0 0.5 0.0 1.0 1.0 0.5 3.0 

18 [91] 0.5 0.0 0.0 0.0 1.0 1.0 0.5 3.0 

19 [92] 0.0 1.0 0.0 0.0 1.0 0.0 1.0 3.0 

20 [93] 0.0 0.0 0.5 0.0 1.0 1.0 0.5 3.0 
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21 [94] 0.5 0.0 0.0 1.0 1.0 0.0 0.5 3.0 

22 [95] 0.5 1.0 0.0 0.0 1.0 0.0 0.5 3.0 

23 [96] 0.5 0.0 0.5 0.0 1.0 1.0 0.5 3.5 

24 [97] 1.0 1.0 0.0 0.0 0.0 1.0 0.5 3.5 

25 [98] 0.5 0.0 0.5 0.0 1.0 1.0 0.5 3.5 

26 [99] 0.0 0.0 1.0 0.0 1.0 1.0 0.5 3.5 

27 [100] 0.0 1.0 0.0 0.0 1.0 1.0 0.5 3.5 

28 [101] 0.0 0.0 1.0 0.0 1.0 1.0 0.5 3.5 

29 [102] 0.0 0.0 1.0 1.0 1.0 0.0 0.5 3.5 

30 [103] 0.0 0.0 0.0 1.0 1.0 1.0 0.5 3.5 

31 [104] 1.0 0.0 0.0 0.0 1.0 1.0 0.5 3.5 

32 [105] 1.0 0.0 0.0 1.0 1.0 0.0 0.5 3.5 

33 [106] 0.5 0.0 0.0 1.0 1.0 1.0 0.5 4.0 

34 [107] 0.5 0.0 1.0 0.0 1.0 1.0 0.5 4.0 

35 [108] 0.5 0.0 1.0 0.0 1.0 1.0 0.5 4.0 

36 [109] 0.5 0.0 1.0 0.0 1.0 1.0 0.5 4.0 

37 [110] 0.0 1.0 0.5 1.0 0.0 1.0 0.5 4.0 

38 [111] 0.5 0.0 1.0 0.0 1.0 1.0 0.5 4.0 

39 [112] 0.0 0.0 0.0 1.0 1.0 1.0 1.0 4.0 

40 [113] 0.0 0.0 1.0 0.5 1.0 1.0 0.5 4.0 

Table 6 shows the result quality scores of selected 

publications with a score of > 4.0. We identified a total of 

78 publications as having a real contribution to the 

definition of a proxy, and the construction method of the 

proxy used, totalising 65.81% of the 117 publications 

selected based on our criteria. 

 

 

Table 6: Result quality scores of selected publications with a score of > 4.0 

Number Publication QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8(Score) 

1 [114] 1.0 0.0 1.0 0.0 1.0 1.0 0.5 4.5 

2 [115] 1.0 0.0 0.0 1.0 1.0 1.0 0.5 4.5 

3 [116] 1.0 1.0 0.0 1.0 0.0 1.0 0.5 4.5 

4 [117] 0.5 0.0 1.0 1.0 1.0 0.0 1.0 4.5 

5 [118] 0.5 0.0 0.5 1.0 1.0 1.0 0.5 4.5 

6 [58] 0.5 1.0 0.5 1.0 1.0 1.0 0.5 4.5 

7 [119] 0.5 1.0 0.5 1.0 1.0 0.0 0.5 4.5 

8 [120] 0.0 1.0 1.0 0.0 1.0 1.0 0.5 4.5 

9 [25] 0.5 1.0 0.0 1.0 1.0 1.0 0.5 5.0 

10 [121] 1.0 0.0 0.5 1.0 1.0 1.0 0.5 5.0 

11 [122] 1.0 0.0 0.0 1.0 1.0 1.0 1.0 5.0 

12 [123] 0.0 1.0 0.0 1.0 1.0 1.0 1.0 5.0 

13 [38] 0.5  1.0  0.0 1.0  1.0  1.0  0.5  5.0 
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14 [50] 0.5 1.0 1.0 1.0 1.0 0.0 0.5 5.0 

15 [69] 0.5 1.0 0.5 1.0 0.0 1.0 1.0 5.0 

16 [15] 1.0 1.0 1.0 1.0 0.0 1.0 0.5 5.5 

17 [22] 1.0 1.0 0.0 1.0 1.0 1.0 0.5 5.5 

18 [23] 1.0 1.0 1.0 0.0 1.0 1.0 0.5 5.5 

19 [26] 1.0 1.0 0.0 1.0 1.0 1.0 0.5 5.5 

20 [34] 1.0 1.0 0.0 1.0 1.0 1.0 0.5 5.5 

21 [40] 1.0 1.0 1.0 1.0 1.0 0.0 0.5 5.5 

22 [59] 1.0 1.0 0.0 1.0 1.0 1.0 0.5 5.5 

23 [124] 1.0 1.0 0.5 1.0 0.5 1.0 0.5 5.5 

24 [17] 0.5 1.0 0.5 1.0 1.0 1.0 0.5 5.5 

25 [43] 0.5 1.0 0.0 1.0 1.0 1.0 1.0 5.5 

26 [44] 0.5 1.0 0.5 1.0 1.0 1.0 0.5 5.5 

27 [45] 0.5 1.0 0.5 1.0 1.0 1.0 0.5 5.5 

28 [51] 0.5 1.0 0.0 1.0 1.0 1.0 1.0 5.5 

29 [21] 1.0 1.0 0.5 0.0 1.0 1.0 1.0 5.5 

30 [28] 1.0 1.0 1.0 0.0 1.0 1.0 0.5 5.5 

31 [68] 1.0 1.0 0.0 1.0 1.0 1.0 0.5 5.5 

32 [5] 1.0 1.0 0.0 1.0 1.0 1.0 1.0 6.0 

33 [62] 1.0 1.0 0.5 1.0 1.0 1.0 0.5 6.0 

34 [64] 1.0 1.0 0.5 1.0 1.0 1.0 0.5 6.0 

35 [11] 0.5 1.0 0.5 1.0 1.0 1.0 1.0 6.0 

36 [16] 0.5 1.0 1.0 1.0 1.0 1.0 0.5 6.0 

37 [65] 0.5 1.0 0.5 1.0 1.0 1.0 1.0 6.0 

38 [125] 0.5 1.0 1.0 1.0 1.0 1.0 0.5 6.0 

39 [20] 1.0 1.0 1.0 0.0 1.0 1.0 1.0 6.0 

40 [47] 1.0 1.0 0.5 1.0 1.0 1.0 0.5 6.0 

41 [57] 1.0 1.0 0.0 1.0 1.0 1.0 1.0 6.0 

42 [61] 1.0 1.0 0.5 1.0 1.0 1.0 0.5 6.0 

43 [66] 1.0 1.0 0.5 1.0 1.0 1.0 0.5 6.0 

44 [7] 0.5 1.0 0.5 1.0 1.0 1.0 1.0 6.0 

45 [35] 0.5 1.0 1.0 1.0 1.0 1.0 0.5 6.0 

46 [36] 0.5 1.0 1.0 1.0 1.0 1.0 0.5 6.0 

47 [37] 0.5 1.0 0.5 1.0 1.0 1.0 1.0 6.0 

48 [3] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

49 [6] 1.0 1.0 1.0 1.0 1.0 1.0 0.5 6.5 

50 [10] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

51 [12] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

52 [24] 1.0 1.0 1.0 1.0 1.0 1.0 0.5 6.5 
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53 [29] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

54 [30] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

55 [32] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

56 [46] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

57 [49] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

58 [42] 0.5 1.0 1.0 1.0 1.0 1.0 1.0 6.5 

59 [55] 0.5 1.0 1.0 1.0 1.0 1.0 1.0 6.5 

60 [9] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

61 [14] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

62 [31] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

63 [41] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

64 [52] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

65 [54] 1.0 1.0 1.0 1.0 1.0 1.0 0.5 6.5 

66 [60] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

67 [67] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

68 [126] 1.0 1.0 0.5 1.0 1.0 1.0 1.0 6.5 

69 [18] 0.5 1.0 1.0 1.0 1.0 1.0 1.0 6.5 

70 [39] 0.5 1.0 1.0 1.0 1.0 1.0 1.0 6.5 

71 [19] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0 

72 [48] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0 

73 [53] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0 

74 [56] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0 

75 [13] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0 

76 [27] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0 

77 [63] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7.0 

 

We presented in Table 6 the results obtained from 77 

publications selected for full reading, by score obtained, 

and the construction of the proxy model, where it is 

possible to identify the modelling or experiment 

developed. 

4.3 Quality factors 

According to [71], SLRs are literature surveys with 

defined research questions, search process, data extraction 

and data presentation, whether the researchers referred to 

their study as a systematic literature review. Due to this, 

we analysed the relationship between the score obtained 

with the QEs and the date of publication. In this analysis, 

we deemed the 77 relevant publications to the proxy 

model development. The average quality scores for 

publications considered as a contribution in the definition 

of a proxy model for each year is shown in Table 7. 

 

 

Table 7: Analysis of quality scores for 77 publications considered relevant in proxy model development  

 Years 

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

Number of publications 7 12 9 2 4 5 6 13 7 5 7 
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Mean  5.79 5.88 5.94 6.25 6.13 5.40 5.67 5.85 5.86 6.10 6.21 

Standard deviation 0.52 0.62 0.76 0.25 0.65 0.73 0.62 0.72 0.83 0.80 0.80 

 

Table 7 indicates that for the years 2008 and 2014 have 

had relatively more publications based on our criteria. 

 

V. DISCUSSION 

This section, we present the answers to our questions  

(Topic 3.1), which reported what has been investigated in 

the literature and considered in proxy model development. 

5.1 How many proxy model studies were performed from 

2007 to 2017? 

Overall, we identified 117 publications. We extracted data 

and synthesised them to answer our research questions. 

We selected 77 publications which they were more 

relevant because the score obtained with the application of 

our research question was higher to 4.0. A total of 40 

papers we considered less relevant because their 

application was simple, or it was not possible to identify 

the proxy model development or the modelling applied.  

About analyse the proxy model performed in the 

literature, we identified six types of proxy models that are 

more utilised in the publications, others were also 

identified, and then an “other metamodel” class was 

created. This class represents 31% of the 117 publications 

which developed another type of metamodel that is 

different from the traditional one. It is possible to affirm 

from the literature that the proxy model is also identified 

as a surrogate, response surface methodology or 

metamodel, and emulator. Concerning the objective 

function used, we analyse 117 publications, and 35.04% 

used implicit objective functions while 31.62% did not 

define or it was not explicit. The greater focus of published 

articles was on “application”, some very detailed and some 

simple. 

This SLR identified 52 articles published in journals, 

totalising 44.44% used to develop this research. Of these 

52 publications published, 23.08% - SPE Journal; 21.15% 

- Journal of Petroleum Science and Engineering; 9.62% - 

Journal of Natural Gas Science and Engineering; 7.69% - 

Journal of Canadian Petroleum Technology; 5.77% - 

Petroleum Science and Technology; 3.85% - SPE 

Reservoir Evaluation & Engineering, and 28.85% are 

distributed in another 14 journals. About the conferences, 

65 articles are published in 27 different Annals, totalising 

56.56% of the 117 publications. Of these 65 publications, 

we noticed 18.46% in Proceedings - SPE Annual 

Technical Conference and Exhibition. Still, if we consider 

all the conferences organised by the Society of Petroleum 

Engineering (SPE), they summarise to 61.54%. From the 

27 Annals, we observed 17 organised by SPE. The 

conferences of ECMOR - European Conference on the 

Mathematics of Oil Recovery, IPTC - International 

Petroleum Technology Conference and SPE Canada 

Heavy Oil Technical Conference correspond to 7.69% 

each. 

5.2 What were the research topics addressed to the 

publication? 

Concerning the subject of the articles, six were related 

to research trends which belong the tree main petroleum 

areas: Past, Future (Decision-making) and Future 

(Reservoir Behavior, Production Forecast), as addressed in 

the model based on CLRDM by [1]. Fig. 5 illustrates the 

six topics (3 past factors; 2 future (decision-making); and 

one future (reservoir behaviour, production forecast)) 

approached in the publications, we identified them in 

different colours. 

 

 

Fig. 5 The three main areas of petroleum reservoir 

studies related to the development and management of 

petroleum fields. In red, past; in blue, decision-making 

(future); in black, reservoir behaviour, production 

forecast (future).  

 

For past (red) highlighting: uncertainty analysis, 

history matching, and reservoir characterization. In terms 

of future (blue) highlighting the aspects that addressed the 

decision-making process: optimization and production 

strategy selection. And for future (black) highlighting the 

elements that addressed reservoir behaviour and 

production forecast: risk analysis. In the 117 publications, 

only 14, or 11.97%, were not possible to identify the 

corresponding area. 

It is essential to mention that there are several ways to 

classify uncertainties in reservoir simulation and 
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characterization. According to [1] we have: (1) 

geostatistical realizations of facies, porosity, NTG and 

permeability; (2) attributes: water relative permeability 

(krw), PVT, water-oil contact depth (WOC), rock 

compressibility (CPOR) and vertical permeability 

multiplier (kz); and (3) economic uncertainties (e.g. 

market values, taxes, costs and investments). Fig. 5 shows 

that the term “optimization” was present in most 

publications. From the data obtained from the production 

optimisation process, data are generated for running past 

information, and they are utilised in the future in the 

production strategy selection process.  

There are publications which addressed the production 

data optimisation, optimisation integrated with uncertainty 

analysis; risk analysis; history matching; production 

strategy selection. In some publications the term 

“optimisation” can be combined to more than one word, 

for example: “optimisation”, “uncertainty analysis”, 

“history matching” and “reservoir characterisation”; or 

“optimisation”, “risk analysis” and “production strategy 

selection”; or “optimisation”, “uncertainty” and “risk 

analysis”. Another factor observed in Fig. 5 is the fact that 

only five publications of the 117 focused on the term 

“production strategy selection”. This term is essential in 

future decision-making processes because the development 

and management of petroleum fields involve risk due to 

several uncertainties. The authors [1] presented the 

integration of these six topics step by step with 

characterisation, long term production data, decision-

making process, history matching, details, particularities 

and complexities. 

5.3 What are the problems investigated and presented in 

the literature for the development of the proxy model?  

Concerning the six topics shown in Fig. 5 obtained 

from SLRs are limited in decision-making, a large number 

of publications (76 papers) related to computational time 

as an essential factor in proxy model development. When 

the proposed proxy model dramatically reduces the 

computation time, it potentially carries out frequent 

execution of uncertainty quantification, history matching, 

risk analysis, and optimisation, resulting in efficient 

reservoir management and significant computational time 

reduction. For example: [7, 59] developed a proxy model 

using Polynomial Chaos Expansion to improve 

computational time when utilising numeric reservoir 

simulator. They obtained significant monetary benefits and 

computational time reduction. 

Research on building a proxy model shows that there 

are critical problems with its development and accuracy. 

Among other issues, we identified the followings: high 

computational costs, computational times and performance 

of reservoir simulator. Therefore, proxy models should 

consider development as an essential quality attribute to be 

achieved, because proxy models do not assume reservoir 

conditions and characteristics, and physical laws, enabling 

reduced computational time, reservoir simulator use and 

human resources. 

The development of a proxy model requires 

considering various factors such as the size and complexity 

of the model. Knowledge of the effects of these factors in 

the six topics highlighted in Fig. 5 is essential both for 

research and practice. Hence, several publications have 

been performed to investigate the effect of these factors. In 

76 publications (from a total of 117), the authors 

highlighted the importance of computational time 

reduction; 9 publications highlighted computational 

resource reduction; and 16 publications highlighted the 

type of data as an essential factor to be investigated in 

proxy model development. In another 16 publications, it 

was not possible to identify the problem present in proxy 

model development. 

Each publication explores a limited set of aspects about 

proxy model development, and some of them report results 

which are contradictory to the conclusions of previous 

work. A good example is the proxy model development 

process and its execution, where there were no reductions 

in computational time because it depended on the problem 

to be more efficient than the application with a commercial 

simulator. To summarise, this SLR in this field is a 

valuable source for researchers and interested parties in the 

development of the proxy model. 

5.4 Why use the proxy model? 

Numerical reservoir simulators are used at various stages 

of field development and management phases in the oil 

and gas industry. Petroleum reservoir engineers evaluate 

the fluid behaviour and drainage patterns during the 

production using reservoir simulation models. This 

procedure is related to the three main areas of field 

development and management phases, illustrated in Fig. 6. 

Reservoir simulation is an essential tool for reservoir 

studies because it permits the representation of reality (real 

petroleum field) through a physical model which can be 

used to describe petroleum production under various 

operating conditions. Depending on the complexity (size 

and representativeness) of the model, the reservoir 

simulation process demands high computational time and 

resources. The high-level heterogeneity of reservoirs and 

fluid-type injected to increase petroleum recovery factor 

often requires high-fidelity models to represent the reality 

in numerical simulation. Decision analysis related to the 

management of petroleum fields with high-fidelity models 

is time-consuming, mainly in probabilistic approaches to 
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cover all possible solutions. Additionally, the decision 

involves a risk analysis that accounts for several 

uncertainties, mostly in the reservoir and fluid parameters, 

economic model, operational availability, and high 

computational cost. 

 

Fig. 6 The three main areas of petroleum reservoir 

studies where it is possible to apply proxy model 

techniques. 

 

The authors [1] portrayed the complexity of the process 

based on 12-step closed-loop reservoir development and 

management. Several research fields that suggested the 

investigation of appropriated architectures and 

methodologies were used as proxies to accelerate some 

parts of the process. The authors [127]  referred to the 

proxy model as ‘‘metamodels’’; in other words, it is a 

‘‘model of a model’’. ‘‘Model emulation’’ is another term 

referring to surrogate modelling (proxy model) [128]. The 

authors [129, 130] mentioned that the term response 

surface surrogate in the literature is referring to the 

metamodel. This way, the proxy model can be defined, 

such as an approximation of a response function built 

using data fitting of limited simulation results [131]. 

Moreover, a metamodel is a relatively simple model 

used to mimic the reservoir simulator output, reproducing 

the simulation’s input-output relationships. The quality of 

the proxy model generated will depend on the 

mathematical approach, and the input used to build it. 

There are many motivations to create the proxy model, 

such as [132-134]: 

 

• Better use of the available, typically limited, 

computational budget; 

• Low-resolution models for simple analysis (predict 

future petroleum production); 

• The models (input and output) are often large and 

complex; 

• Computational demands result in high computer time 

for obtaining results from such complex models, especially 

in probabilistic settings; 

• Unreasonably high computer times could prevent 

decision-maker from exploring the design space, resulting 

in underperforming results. 

The main obstacle of the reservoir numerical simulator 

is the extensive use of the most sophisticated techniques, 

and the high number of model runs required. On the other 

hand, the proxy models tend to be fast. 

The most used proxy models in the oil industry 

highlighted in the SLR were: kriging model (KG); 

artificial neural network (ANN); response surface 

methodology (RSM), fuzzy logic (FL), Kalman filter (KF), 

Experimental Design (ED), and Bayesian emulators (EM) 

and other models such as genetic algorithm (GA), 

Karhunen–Loève expansion (KL), polynomial chaos 

expansion (PCE), support vector machine (SVM) and deep 

learning (DL). 

5.4.1 Kriging Model 

Kriging (KG) is a geostatistical technique for 

estimating properties at locations that do not have 

measured data [55]. In other words, KG is the 

geostatistical method of predicting values at unsampled 

points [135], which is a form of multi-dimensional 

interpolation very commonly used to build the proxy 

model in petroleum reservoir studies. It uses a variogram 

model (a measure of spatial correlation) to infer the 

weights given to each data point.  

It is worth mentioning that KG is similar to other 

interpolation methods, such as radial basis function (RBF) 

and spline. Besides, it is a combination of a polynomial 

model, which is a global function over the entire input 

space, and a localized deviation model based on spatial 

correlation of samples [133]. 

According to [135], the main goal of the KG is to 

predict the values of stationary covariance at the 

unsampled point concerning the mean squared error. The 

covariance function is not commonly known and needs to 

be estimated. There are some types of KG: ordinary 

kriging, simple kriging, universal kriging, and the co-

kriging, [135] presented the details and their mathematical 

derivation. The authors [55, 135] give more information on 

this technique. 

5.4.2 Artificial Neural Network 
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Artificial neural networks (ANNs) are structures 

inspired by biological nervous systems, which can deal 

with different complex problems. In other words, ANNs 

are computational models developed on the principle of 

the biological nervous system [64]. According to [65], it is 

a virtual intelligence or machine learning technique which 

is useful for pattern recognition and prediction of a 

complicated non-linear relationship between input and 

output.  

ANNs can assimilate highly complex relationships 

between several variables that are presented to the network 

and learn the characteristics of the dependency between 

input and output [62, 63]. ANNs are classified in 

supervised and unsupervised learning. Unsupervised 

learning is used to classify a set of data into a specific 

number of features. In contrast, supervised learning 

classifies patterns and makes decisions based on the 

patterns of inputs and outputs learned. 

The use of ANNs has been increasing in the oil and gas 

industry over the past decades to solve many complex and 

highly non-linear problems [136] and uncertain 

relationships between the input and output for given 

dataset [68]. According to [61], the results of some 

applications of ANNs in several research fields suggest the 

investigation of appropriated architectures for reservoir 

simulator. They have been successfully applied in several 

research fields of petroleum engineering to solve various 

problems, for example, reservoir characterisation, 

forecasting, risk analysis, history matching, uncertainty 

analysis, optimisation, production strategy selection, 

among others. The authors [3, 69] present more application 

of ANNs in the oil and gas industry. 

The difficulty in the application of ANNs as a reservoir 

simulator proxy is for them to be fully trained, which 

requires a large number of reservoir simulation runs [61]. 

Otherwise, ANNs have the benefit over other conventional 

techniques, such as response surface and reduced models, 

to perform complex and highly non-linear inputs and 

outputs accurately and rapidly [69]. According to [137], 

ANNs offer some advantages, including their capacity of 

inferring highly complex, nonlinear, and possibly 

uncertain relationships between system variables, requiring 

practically zero prior knowledge regarding the unknown 

function. 

5.4.3 Response Surface Methodology 

Response Surface Methodology (RSM) is an 

application of statistical and mathematical techniques 

useful for developing and optimizing models and 

parameters [18]. The authors [139] defined RSM as a 

combination of statistical methods to build an empirical 

model for the objective function used in the process.  

The authors [69] highlighted various studies which 

used RSM to calculate the porosity and permeability 

distribution in a heterogeneous and multiphase reservoir. 

Also, to replicate the results of a full field simulation 

model based on time complexity, and to analyse of the 

uncertainty of coalbed methane production to optimise the 

performance of a reservoir; among other studies. 

According to [40], the goal of the experimental design and 

RSM is to build response surfaces of specific objective 

functions that genuinely represent the response. For more 

application using RSM in the oil and gas industry, see 

[31].  

5.4.4 Fuzzy Logic 

Fuzzy logic (FL) is a superset of conventional 

Boolean logic that has been extended to handle the 

concept of partial values between true and false [139, 

140]. In other words, FL is logic or probabilistic form, 

which deals with reasoning that is approximate rather 

than exact. It is built with fuzzifier, the inference 

mechanism, the rules, and the defuzzifier. 

In the petroleum industry, there are many different 

studies with the application of FL, for example, [141] in 

dealing with the uncertainty of a number introduced a 

fuzzy analytic hierarchy process. This process describes a 

relationship between an uncertain quantity and a function 

which ranges from 0 to 1. The authors [49] present more 

studies concerning FL. 

5.4.5 Kalman Filter 

According to [142], the Kalman filter (KF) can be 

viewed, such as a Bayesian estimator that approximates 

conditional probability densities of the time-dependent 

vector. KF is optimal for linear problems for assimilating 

measurements to update the estimate of variables 

continuously. Additionally, it is most appropriate when a 

short number of variables characterizes the issues and 

when the variables to be estimated are linearly related to 

the observations [21, 23]. According to [23], this case is 

not applied to spatiotemporal reservoir problems because 

the number of model parameters is typically very high, and 

the relation between the reservoir model and the 

production observations, represented by a fluid-flow 

simulator, is highly nonlinear. It is essential to highlight 

that most data assimilation problems in petroleum 

reservoir engineering are highly nonlinear and are 

characterised by many variables. 

Several extensions of the KF techniques have been 

suggested, such as ensemble Kalman filter (EnKF), 
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developed by [143], and documented by [144-146]. In 

reservoir engineering literature, EnKF has been primarily 

used to estimate or stochastically simulate grid block 

permeabilities and porosities [147]. Therefore, it can be 

conceptually extended to include other parameters [22]. 

According to [26], EnKF performs the initial sampling, 

forecasting, and assimilation steps for automatic history 

matching in the petroleum industry. EnKF has emerged as 

an attractive option for reservoir history matching 

problems because it is simple to implement and can be 

computationally efficient [27-30; 147]. It can also improve 

the accuracy and reduce the corresponding predictive 

uncertainty by accounting for observations [9].  

The use of the EnKF is a promising approach for data 

assimilation and assessment of uncertainties during 

reservoir characterization and performance forecasting 

[25]. Many studies using EnKF in petroleum engineering 

can be seen in [22, 23, 26]. 

5.4.6 Experimental Design 

Experimental Design (ED) can be used to generate a 

reliable response surface which covers the entire range of 

uncertain parameters [3]. In other words, according to 

[148], ED presents a method that investigates the effects of 

multiple variables on output or response, simultaneously.  

The experiment of [39], with the ED application, 

involved many simulations and are made changes on the 

input variable. The authors [5] mentioned that, in an 

experiment, one or more variables could be changed to 

quantify the effect of inputs on outputs (response 

variables). ED is used to avoid the time-consuming 

process to captured all changes with the minimum number 

of simulator runs [31, 38]. The authors [34, 38, 41) show 

many studies in petroleum engineering which applied the 

ED methodology. 

5.4.7 Bayesian Emulators 

The authors [10] inform that an emulator is usually 

composed of a predictor (a statistical approximation of the 

unknown function), and also by predictor uncertainty 

quantification. In other words, an emulator uses reservoir 

properties as input in a statistical model constructed from 

simulator outputs. The emulator response is faster, but 

there is still a need to establish the issues with uncertainty 

in the inputs and outputs.  

The number of methodologies using Bayesian 

emulators is increasing [11-13, 62, 149-154]. But, there are 

still some obstacles in the implementation, especially in 

production strategy selection stages, as follows: 

• The high computational costs in the quantification of 

probabilistic problems; 

• Effective ways to parameterize the geostatistical 

realization uncertainties (porosity and permeability 

distribution); 

• Analysis of measurement errors of various classes of 

uncertainties; 

• Assessment of model discrepancy for uncertainty 

quantification; 

• Practical techniques for the decision-making process. 

This way, the development of emulators requires 

careful consideration of various factors, such as 

optimization process, uncertainty quantification and 

computational time. The initial knowledge of factor effects 

during the emulator’s construction is fundamental to 

obtain a useful emulator. 

It is worth highlighting that there are many 

uncertainties associated with the generation of 

geostatistical realizations [8, 155]. These are combined 

with realizations from the reservoir, technical and/or 

economic models to compose the different reservoir model 

scenarios [156]. These scenarios are then used to make 

decisions without fully accounting for uncertainties and 

risks. 

5.4.8 Other Proxy Models 

This section includes a summary of other proxy models 

found in the SLR.  

• Genetic algorithm (GA) – They are stochastic search 

and optimization heuristics methods from classical 

evolution theory [157]. Moreover, they require only 

objective function evaluations to find optimised points, 

even though the derivative information is not available 

[48]. Therefore, their extensive application in different 

fields is proof that they can be applied to various 

engineering problems [48, 60]. 

• Karhunen–Loeve expansion (KL) - It is a promising 

approach for representing random fields from a covariance 

matrix. It is a linear relation that decorrelates the random 

field while preserving the two-point statistics of the area 

[7]. The covariance function may describe the correlation 

structure of the random field. KL is an optimal technique 

for parameterization [158] because it approximates the 

original random area accurately and with a minimum 

number of inputs [7]. The authors [159] present more 

details about KL.  

• Polynomial Chaos Expansion (PCE) – Wiener (1938) 

introduced this technique. According to [59], PCE 

obtained notable of popularity for the uncertainty 

quantification of dynamic systems. It is worth mentioning 

that [159] were pioneers in the use of uncertainty 

quantification. Nowadays, PCE is applied to various 

problems and studies in petroleum engineering. The 
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authors [159] used PCE to quantify uncertainty for 

efficient closed-loop production optimisation. While the 

authors [59] used PCE as a proxy substitute for the full 

reservoir simulator proxy when applied to the Markov 

chain Monte Carlo method and the authors [7] used PCE to 

predict the production parameters of steam-assisted gravity 

drainage (SAGD) reservoir. It is worth noting that PCEs 

have a significant advantage over other proxy models, 

because of their convergence in probability and 

distribution to the output random variable of interest [7, 

59].  

• Support Vector Machine (SVM) – It is a part of 

machine learning (artificial intelligence – AI), a supervised 

learning technique, being widely applied in classification 

and regression analysis. According to [31], AI is an 

application in the oil and gas industry which has enormous 

potential to explore the knowledge regarding reservoir 

characterization, PVT properties, well placement, etc. The 

authors [8, 161-163] presented an application in the in 

petroleum engineering. 

• Deep learning (DL) – We did not identify this 

technique in the articles analyzed for the development of 

SLR, but some authors mentioned future work utilizing 

DL in petroleum engineering. The authors [164, 165] 

applied DL to petroleum well data. 

 

VI. CONCLUSION 

This research enables us not only to know about state-

of-the-art proxy modelling but also serves to identify the 

primary contexts in which to apply it. Besides, it provides 

us with insight into the criteria used when facing the need 

to decide on the method based on a context to perform this 

task. In this SLR, we identified the three main area 

applications related to the petroleum engineering area: 

past, future (decision-making) and future (reservoir 

behaviour, production forecast). These area applications 

are based in 6 topics (three past, two decision-making and 

one reservoir behaviour and production forecast): 

uncertainty analysis, history matching, reservoir 

characterisation, optimisation, production strategy 

selection and risk analysis. 

Depending on the complexity of the model, the use of 

reservoir simulator is more efficient than a proxy because 

of the high computational time and human resources. A 

total of 64.96% of the 117 publications selected, the 

authors mentioned that the computational time reduction is 

essential for the development of the proxy model 

development. When working on proxy modelling, this 

becomes even more complex due to high-heterogeneous 

reservoirs and high-dimensionality problems, especially in 

maintaining the geological consistency, which is the main 

focus of reservoir modelling. The dimensionality reduction 

is a complex problem and involves thousands of reservoir 

simulation runs, representing an obstacle for practical 

applications when we did not define the adequate method 

and number of dimension. 

This SLR has various limitations, mainly in the 

petroleum engineering area, because it is not a developed 

research method. Another limitation is the inclusion and 

exclusion criteria constructed and used in our research. 

This research relies on certain types of publications in 

reviewing academic literature. We did not include in the 

development of the SLR, the scientific articles published 

as books, technical reports, work in progress, and 

publications without bibliographical information or 

unpublished research that were not in the seven databases. 

Therefore, this research may be missing relevant studies 

published in other digital libraries, or those did not appear 

in the search results due to the search string. Due to 

criteria, we were in line with the exclusion criteria of this 

study, and with all requirements established 

systematically, so as not to pose risks for validating the 

results. 

The primary purpose of this SLR was to ascertain 

existing decision-making and criteria for the comparison 

and selection of methods for proxy model development in 

future research. The results may also be useful for 

researchers as it can help them to analyse the existing 

publications in the different methods utilized in the 

metamodel development, identifying gaps to perform 

further research. Additionally, from the SLR, scientific 

methods are straightforward and reproducible because 

their proposed methodology enables an accurate survey 

and a scientific development of the state-of-the-art in the 

specific problems of research. For this reason, we could 

achieve future work about metamodel with the integration 

of fast methods and reservoir numerical simulator runs. 

The integration can improve and accelerate results within 

acceptance criteria and accuracy in the decision-making 

process related to reservoir management and development, 

which are necessary for the uncertainty quantification 

process in the petroleum field.  
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