
 

International Journal of Advanced Engineering Research and Science 

(IJAERS) 

Peer-Reviewed Journal 

ISSN: 2349-6495(P) | 2456-1908(O) 

Vol-11, Issue-1; Jan, 2024 

Journal Home Page Available: https://ijaers.com/ 

Article DOI: https://dx.doi.org/10.22161/ijaers.11.6 
 

 

www.ijaers.com                                                                                                                                                                              Page | 34  

Breaking Index Study on Weighted Laplace Equation 

Syawaluddin Hutahaean 
 

Ocean Engineering Program, Faculty of Civil and Environmental Engineering,-Bandung Institute of Technology (ITB), Bandung 40132, 

Indonesia 

syawalf1@yahoo.co.id 

 

Received: 04 Dec 2023, 

Receive in revised form: 08 Jan 2024, 

Accepted: 17 Jan 2024, 

Available online: 25 Jan 2024 

©2024 The Author(s). Published by AI 

Publication. This is an open access article under 

the CC BY license 

(https://creativecommons.org/licenses/by/4.0/) 

Keywords— Weighted Taylor Series, Weighted 

Laplace Equation, Weighted Coefficients 

Abstract— This study serves as an extension of prior research focusing 

on weighting coefficients within the context of weighted Taylor series. 

The primary objective is to determine the weighting coefficients' values 

in the weighted Taylor series for the purpose of modeling water waves 

based on velocity potential. Utilizing the weighted Taylor series, we 

derive both the weighted continuity equation and the weighted Laplace 

equation. The latter is addressed using the variable separation method 

over a sloping bottom, leading to the formulation of the velocity 

potential equation, wave constant equations, and energy conservation 

equations. Within the wave constant equations, a breaking equation is 

incorporated. Leveraging both the breaking equation and the energy 

conservation equations, breaking indexes equations are formulated. 

These equations encompass breaker length, breaker depth, and breaker 

height indexes, with weighting coefficients prominently featured. 

Calibrating the results of the breaking indexes equations against 

findings from earlier studies provides suitable values for the weighting 

coefficients. Additionally, this research introduces a shoaling-breaking 

model and a refraction-diffraction model to explore the phenomena of 

shoaling-breaking within the solution of the weighted Laplace equation. 

 

I. INTRODUCTION 

Hydrodynamic equations are conventionally expressed 

through Taylor series, typically truncated to first order, 

under the assumption that higher-order terms, such as 

second order and beyond, become negligible at very small 

intervals. While not inherently incorrect, this truncation 

approach sacrifices the representation of the function's 

characteristics encapsulated in the higher-order terms, 

leading to an imprecise approximation. 

To address this limitation, Hutahaean (2021,2022,2023a) 

proposes the utilization of weighted Taylor series. This 

involves truncating the Taylor series to the first order, while 

compensating for the omission of higher-order 

contributions through the incorporation of weighting 

coefficients. In Hutahaean's work (2023a), a more 

systematic application of Taylor series truncation is 

introduced, employing the Central Difference Method. This 

method allows for the systematic removal of even higher-

order differential terms, ensuring their disappearance 

without merely being eliminated or overlooked. 

Furthermore, the study explores the extraction of 3rd order 

odd differential term contributions, with the additional 

inclusion of 5th order terms. 

The use of the weighted Taylor series is characterized by 

the absence of truncation errors. Consequently, when 

applied to the continuity equation, the weighted Taylor 

series formulation minimizes or eliminates truncation 

errors. Similarly, the weighted Laplace equation, derived 

from the weighted continuity equation, maintains this 

heightened accuracy. Moreover, equations pertaining to 

various wave mechanics, formulated using the weighted 

Laplace equations, incorporate weighting coefficients, 

thereby enhancing their accuracy and reliability. 
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II. WEIGHTED TAYLOR SERIES  

Taylor series (Arden, Bruce W. and Astill Kenneth N. 

,1970) for a function 𝑓 = 𝑓(𝑥, 𝑡) where 𝑥 is the horizontal 

axis and 𝑡 is time 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
+ 

𝛿𝑡2

2!

Ƌ2𝑓

Ƌ𝑡2
+ 𝛿𝑡𝛿𝑥

Ƌ2𝑓

Ƌ𝑡Ƌ𝑥
+

𝛿𝑥2

2!

Ƌ2𝑓

Ƌ𝑥2
+ ⋯ 

                                                              ……….(1) 

 

This equation can be expressed as,     

 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 

                     (1 +
𝛿𝑡

2!

Ƌ

Ƌ𝑡
+ 𝛿𝑥

Ƌ

Ƌ𝑥
+ ⋯ ) 𝛿𝑡

Ƌ𝑓

Ƌ𝑡
+ 

                    (1 +
𝛿𝑥

2!

Ƌ

Ƌ𝑥
+. . ) 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

 

In this paper, 𝑥 represents the horizontal axis, 𝑧 represents 

the vertical axis, while 𝑡 represents time. 

The complete Taylor series, there are contributions from 

high-order differential terms in the first-order differential 

term. The contributions of these high-order differential 

terms can be represented by a coefficient, allowing for the 

elimination of terms with high differentials. 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛾𝑡,2𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛾𝑥𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

                                                                   ……..(2) 

𝛾𝑡,2 and 𝛾𝑥  are referred to as weighting coefficients, while 

(2) is called the weighted Taylor series. The weighted 

Taylor series for the function 𝑓(𝑥, 𝑧, 𝑡) is as follows: 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑧, 𝑡) + 𝛾𝑡,3𝛿𝑡
Ƌ𝑓

Ƌ𝑡
 

                                 +𝛾𝑥𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ 𝛾𝑧𝛿𝑧

Ƌ𝑓

Ƌ𝑥
      ……(3) 

 

There is no difference in the values of 𝛾𝑥  in the function 

𝑓(𝑥, 𝑡)  compared to 𝛾𝑥 in the function 𝑓(𝑥, 𝑧, 𝑡). The 

baseline values for these weighting coefficients are 𝛾𝑡,2 =

2, 𝛾𝑡,3 = 3, 𝛾𝑥 = 1 and 𝛾𝑧 = 1. More precise values of the 

weighting coefficients are presented in Table (1). The 

calculation method can be found in Hutahaean (2023a), 

where the computation of the weighting coefficients in 

Table (1) is achieved with greater accuracy compared to 

Hutahaean (2023a). In these weighting coefficients, all 

even-order differential terms in the Taylor series are 

represented, while the absorbed odd-order high differential 

terms are of order 3 and 5. Higher-order differentials are 

truncated with the reduction of intervals, 𝛿𝑡, 𝛿𝑥 and 𝛿𝑧. The 

values of the weighting coefficients are presented in Table 

(1). 

Table 1 Weighting coefficient values 

𝜀 𝛾𝑡,2 𝛾𝑡,3 𝛾𝑥 𝛾𝑧 

0.03 1.99812 3.05087 0.98899 1.11999 

0.032 1.99786 3.05877 0.98746 1.139 

0.034 1.99758 3.06738 0.98583 1.15986 

0.036 1.99728 3.07674 0.9841 1.1827 

0.038 1.99695 3.08689 0.98227 1.20765 

0.04 1.99662 3.09786 0.98034 1.23485 

0.042 1.99626 3.1097 0.97831 1.26448 

0.044 1.99588 3.12244 0.97617 1.29669 

0.046 1.99548 3.13614 0.97393 1.3317 

 

𝜀 is referred to as the optimization coefficient, where a 

larger 𝜀 corresponds to a larger interval size and 

consequently, larger values for the absorbed third and fifth-

order differential terms in the weighting coefficients. This 

research aims to obtain appropriate values for the weighting 

coefficients expressed in terms of 𝜀. The appropriateness is 

assessed concerning the breaking parameter generated by 

the breaking index equations. 

 

III. WEIGHTED LAPLACE EQUATION 

The Laplace equation is formulated by employing the 

continuity equation, substituting the properties of the 

velocity potential into the continuity equation. The 

formulation of the weighted continuity equation is carried 

out using a well-known method, namely by applying the 

principle of mass conservation to a control volume where 

fluid inflow-outflow occurs, 

3.1.  Weighted Continuity Equation  

By employing the weighted Taylor series, a weighted 

continuity equation can be obtained. 

𝛾𝑥
Ƌ𝑢

Ƌ𝑥
+ 𝛾𝑧

Ƌ𝑤

Ƌ𝑧
= 0                                            ……(4) 

𝑢 is the horizontal water particle velocity, and 𝑤 is the 

vertical water particle velocity. This equation represents the 

weighted continuity equation, where 𝛾𝑥 and 𝛾𝑧  are 

weighting coefficients. By using the weighted Taylor series, 

there is no longer truncation error or at least the truncation 

error has been greatly minimized 

Mathematically, equation (4) can be written as, 

http://www.ijaers.com/
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Ƌ𝑢

Ƌ𝑥
+

𝛾𝑧

𝛾𝑥

Ƌ𝑤

Ƌ𝑧
= 0 

Or, 

𝛾𝑥

𝛾𝑧

Ƌ𝑢

Ƌ𝑥
+

Ƌ𝑤

Ƌ𝑧
= 0 

Both of these writings are somewhat inaccurate and will 

result in different solutions because each coefficient has a 

specific function. It can be said that 𝛾𝑥 is associated with 
Ƌ𝑢

Ƌ𝑥
 

and 𝛾𝑧 is associated with 
Ƌ𝑤

Ƌ𝑧
. 

 

3.2. Weighted Laplace Equation 

In fluid flow, there is a scalar quantity called velocity 

potential, denoted as,  

𝑢 = −
Ƌ𝜙

Ƌ𝑥
  and  𝑤 = −

Ƌ𝜙

Ƌ𝑧
  

Substituting the velocity potential property into (4), we 

obtain the weighted Laplace equation, 

𝛾𝑥
Ƌ2𝜙

Ƌ𝑥2 + 𝛾𝑧
Ƌ2𝜙

Ƌ𝑧2 = 0                                       …….(5)   

This Laplace equation differs from the commonly used 

Laplace equation in water wave modeling, where there are 

actually weighting coefficients with 𝛾𝑥 = 𝛾𝑧 = 1.  

 

IV. SOLUTION TO THE WEIGHTED 

LAPLACE EQUATION  

4.1. Solution using the Separation of Variables Method 

The solution to (5) is carried out using the separation of 

variables method. In the variable separation method, it is 

assumed that the velocity potential is the product of three 

functions (Dean (1991)), namely 

𝜙(𝑥, 𝑧, 𝑡) = 𝑋(𝑥)𝑍(𝑧)𝑇(𝑡)                                 ….(6)  

Here, 𝑋(𝑥) :  is a function of 𝑥 only, 𝑍(𝑧) is a function of 𝑧 

only, and 𝑇(𝑡) is a function of 𝑡 only. Substituting into (5) 

and dividing the equation by (6), the following is obtained: 

𝛾𝑥

𝑋(𝑥)

Ƌ2𝑋

Ƌ𝑥2
+

𝛾𝑧

𝑍(𝑧)

Ƌ2𝑍

Ƌ𝑧2
= 0 

This equation is fulfilled if  

𝛾𝑥

𝑋(𝑥)

Ƌ2𝑋

Ƌ𝑥2
= −𝑘2 

Defined as 𝑘𝑥 =
𝑘

√𝛾𝑥
, hence  

1

𝑋(𝑥)

Ƌ2𝑋

Ƌ𝑥2 = −𝑘𝑥
2                                                   ….(7) 

 Using the same method,    

1

𝑍(𝑧)

Ƌ2𝑍

Ƌ𝑧2 = 𝑘𝑧
2                                                    ……(8)  

Where 𝑘𝑧 =
𝑘

√𝛾𝑧
.  

𝑘 is the wave number where the wavelength is 𝐿 =
2𝜋

𝑘
. 

Hence, there are two wavelengths: the horizontal 

wavelength, 𝐿𝑥 =
2𝜋

𝑘𝑥
  , and the vertical wavelength, 𝐿𝑧 =

2𝜋

𝑘𝑧
, with different lengths. 

 

Equation  (7), is offered for a solution 

𝑋(𝑥) = 𝐴 cos 𝑘𝑥𝑥 + 𝐵 sin 𝑘𝑥𝑥 

Equation  (8) has a solution of 

𝑍(𝑧) = 𝐶𝑒𝑘𝑧𝑧 + 𝐷𝑒−𝑘𝑧𝑧 

Then, an assumption is made that the velocity potential is 

periodic with respect to time; hence, 𝑇(𝑡) = sin 𝜎𝑡 

 𝜎 =
2𝜋

𝑇
 s the angular frequency, where 𝑇 is the wave 

period. Substituting 𝑋(𝑥), 𝑍(𝑧) and 𝑇(𝑡) ke (6),  

𝜙(𝑥, 𝑧, 𝑡) = (𝐴 cos 𝑘𝑥𝑥 + 𝐵 sin 𝑘𝑥𝑥) 

                         (𝐶𝑒𝑘𝑧𝑧 + 𝐷𝑒−𝑘𝑧𝑧) sin 𝜎𝑡       ….(9) 

The constants A, B, C, and D in equation (9) still need their 

specific forms to be determined. 

 

4.2. Working on the Kinematic Bottom Boundary Condition  

To obtain equations for the constants in the solution, the 

Kinematic Bottom Boundary Condition is applied at 

characteristic points where cos 𝑘𝑥𝑥 = sin 𝑘𝑥𝑥.  At these 

characteristic points, the velocity potential equation 

becomes, 

𝜙(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵) cos 𝑘𝑥𝑥 

                                (𝐶𝑒𝑘𝑧𝑧 + 𝐷𝑒−𝑘𝑧𝑧) sin 𝜎𝑡 

Kinematic bottom boundary condition is, 

𝑤−ℎ = −𝑢−ℎ

𝑑ℎ

𝑑𝑥
 

𝑤−ℎ is the vertical water particle velocity at the sea bed at 

𝑧 = −ℎ. 

𝑢−ℎ is the horizontal water particle velocity at the sea bed 

at 𝑧 = −ℎ. 

ℎ is the water depth relative to the still water level, 
𝑑ℎ

𝑑𝑥
  is the 

bottom slope, which has a negative value for waves moving 

from deeper to shallower waters. Utilizing the properties of 

velocity potential, 

𝑤(𝑥, 𝑧, 𝑡) = −
Ƌ𝜙

Ƌ𝑧
= −(𝐴 + 𝐵)𝑘𝑧 cos 𝑘𝑥𝑥 

                                        (𝐶𝑒𝑘𝑧𝑧 − 𝐷𝑒−𝑘𝑧𝑧) sin 𝜎𝑡 
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𝑤−ℎ = −(𝐴 + 𝐵)𝑘𝑧 cos 𝑘𝑥𝑥 

                                          (𝐶𝑒−𝑘𝑧ℎ − 𝐷𝑒𝑘𝑧ℎ) sin 𝜎𝑡 

𝑢(𝑥, 𝑧, 𝑡) = −
Ƌ𝜙

Ƌ𝑥
= (𝐴 + 𝐵)𝑘𝑥 sin 𝑘𝑥 

                                       (𝐶𝑒𝑘𝑧𝑧 + 𝐷𝑒−𝑘𝑧𝑧) sin 𝜎𝑡 

 

𝑢−ℎ = (𝐴 + 𝐵)𝑘𝑥 sin 𝑘𝑥𝑥 (𝐶𝑒−𝑘𝑧ℎ + 𝐷𝑒𝑘𝑧ℎ) sin 𝜎𝑡 

The substitution of the Equations   𝑤−ℎ and 𝑢−ℎ to 

Kinematic Bottom Boundary Condition was performed at 

characteristic points as well as at (𝐴 + 𝐵) and  and when 

sin(σt) is not equal to zero, yields the equation 

𝑘𝑧(𝐶𝑒−𝑘𝑧ℎ − 𝐷𝑒𝑘𝑧ℎ) = 𝑘𝑥(𝐶𝑒−𝑘𝑧ℎ + 𝐷𝑒𝑘𝑧ℎ)
𝑑ℎ

𝑑𝑥
 

(𝑘𝑧 − 𝑘𝑥

𝑑ℎ

𝑑𝑥
) 𝐶𝑒−𝑘𝑧ℎ = (𝑘𝑧 + 𝑘𝑥

𝑑ℎ

𝑑𝑥
) 𝐷𝑒𝑘𝑧ℎ 

Considering  𝑘𝑥 =
𝑘

√𝛾𝑥
 dan 𝑘𝑧 =

𝑘

√𝛾𝑧
 

(
1

√𝛾𝑧

−
1

√𝛾𝑥

𝑑ℎ

𝑑𝑥
) 𝐶𝑒−𝑘𝑧ℎ = (

1

√𝛾𝑧

+
1

√𝛾𝑥

𝑑ℎ

𝑑𝑥
) 𝐷𝑒𝑘𝑧ℎ 

𝐶 = 𝐷𝑒2𝑘𝑧ℎ

1

√𝛾𝑧
+

1

√𝛾𝑥

𝑑ℎ
𝑑𝑥

1

√𝛾𝑧
−

1

√𝛾𝑥

𝑑ℎ
𝑑𝑥

 

Defined as,  

𝛼 =

1

√𝛾𝑧
+

1

√𝛾𝑥

𝑑ℎ
𝑑𝑥

1

√𝛾𝑧
−

1

√𝛾𝑥

𝑑ℎ
𝑑𝑥

 

Hence  

𝐶 = 𝐷𝑒2𝑘𝑧ℎ𝛼 

Substituting to (7) 

𝜙(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵) cos 𝑘𝑥𝑥 

                       (𝐷𝑒2𝑘𝑧ℎ𝛼𝑒𝑘𝑧𝑧 + 𝐷𝑒−𝑘𝑧𝑧) sin 𝜎𝑡 

 

𝜙(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵)𝐷𝑒𝑘𝑧ℎ cos 𝑘𝑥𝑥 

                                      (𝛼𝑒𝑘𝑧(𝑧+ℎ) + 𝑒−𝑘𝑧(𝑧+ℎ)) sin 𝜎𝑡 

 

Defined as, 

𝛽(𝑧) =
𝛼𝑒𝑘𝑧(𝑧+ℎ) + 𝑒−𝑘𝑧(𝑧+ℎ)

2
 

𝛽1(𝑧) =
𝛼𝑒𝑘𝑧(𝑧+ℎ) − 𝑒−𝑘𝑧(𝑧+ℎ)

2
 

Where on 𝛼 = 1, 

 𝛽(𝑧) = cosh 𝑘𝑧(ℎ + 𝑧); 𝛽1(𝑧) = sinh 𝑘𝑧(ℎ + 𝑧) 

𝜙(𝑥, 𝑧, 𝑡) = 2(𝐴 + 𝐵)𝐷𝑒𝑘𝑧ℎ𝛽(𝑧) cos 𝑘𝑥 sin 𝜎𝑡 

Defined as 𝐴 = 2𝐴 dan 𝐵 = 2𝐵, hence  

𝜙(𝑥, 𝑧, 𝑡) = (𝐴 + 𝐵)𝐷𝑒𝑘𝑧ℎ𝛽(𝑧) cos 𝑘𝑥𝑥 sin 𝜎𝑡 

Hutahaean (2022) shows that 𝐴 = 𝐵 

𝜙(𝑥, 𝑧, 𝑡) = 2 𝐴𝐷𝑒𝑘𝑧ℎ𝛽(𝑧) cos 𝑘𝑥𝑥 sin 𝜎𝑡 

Defined as 𝐺 = 𝐴𝐷𝑒𝑘𝑧ℎ 

𝜙(𝑥, 𝑧, 𝑡) = 2𝐺𝛽(𝑧) cos 𝑘𝑥𝑥 sin 𝜎𝑡  

The full equation, 

𝜙(𝑥, 𝑧, 𝑡) = 𝐺𝛽(𝑧) cos 𝑘𝑥𝑥 sin 𝜎𝑡 + 𝐺𝛽(𝑧) 

                                         sin 𝑘𝑥𝑥 sin 𝜎𝑡           …..(10) 

 

At the characteristic point where cos 𝑘𝑥𝑥 = sin 𝑘𝑥𝑥, 

velocity potential equation becomes, 

𝜙(𝑥, 𝑧, 𝑡) = 2𝐺𝛽(𝑧) cos 𝑘𝑥𝑥 sin 𝜎𝑡              ……(11) 

 

V. EQUATION FOR 𝑮 

The equation for 𝐺 is formulated by integrating the 

Kinematic Free Surface Boundary Condition with respect to 

time 𝑡 and is performed at characteristic points. The form of 

the Kinematic Free Surface Boundary Condition uses a 

weighted Taylor Series for two variables 𝑓 = 𝑓(𝑥, 𝑡), in this 

case, where the function 𝑓 is the water elevation 𝜂 =

𝜂(𝑥, 𝑡). 

𝜂(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝜂(𝑥, 𝑡) + 𝛾𝑡,2𝛿𝑡
Ƌ𝜂

Ƌ𝑡
+ 𝛾𝑥𝛿𝑥

Ƌ𝜂

Ƌ𝑥
 

𝜂(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝜂(𝑥, 𝑡)

𝛿𝑡
= 𝛾𝑡,2

Ƌ𝜂

Ƌ𝑡
+ 𝛾𝑥

𝛿𝑥

𝛿𝑡

Ƌ𝜂

Ƌ𝑥
 

With 𝛿𝑡 and 𝛿𝑥 that are small, there obtained, 

𝐷𝜂

𝑑𝑡
= 𝛾𝑡,2

Ƌ𝜂

Ƌ𝑡
+ 𝛾𝑥𝑢𝜂

Ƌ𝜂

Ƌ𝑥
 

𝐷𝜂

𝑑𝑡
 is the total velocity of vertical surface water particle 

movement is denoted as  𝑤𝜂, while 𝑢𝜂 represents the 

horizontal surface water particle velocity. Therefore, the 

equation for the Kinematic Free Surface Boundary 

Condition is. 

𝑤𝜂 = 𝛾𝑡,2

Ƌ𝜂

Ƌ𝑡
+ 𝛾𝑥𝑢𝜂

Ƌ𝜂

Ƌ𝑥
 

This equation is expressed as the water surface equation  as 

follows, 

𝛾𝑡,2

Ƌ𝜂

Ƌ𝑡
= 𝑤𝜂 − 𝛾𝑥𝑢𝜂

Ƌ𝜂

Ƌ𝑥
 

𝑤𝜂 and 𝑢𝜂 are substituted by velocity potential  (11), using 

the velocity potentials properties (𝑢 = −
Ƌ𝜙

Ƌ𝑥
, 𝑤 = −

Ƌ𝜙

Ƌ𝑧
), 

and by considering that 𝑘𝑥 =
𝑘

√𝛾𝑥
 dan  𝑘𝑧 =

𝑘

√𝛾𝑧
, 
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𝛾𝑡,2

Ƌ𝜂

Ƌ𝑡
= −2𝐺𝑘 (

1

√𝛾𝑧

𝛽1(𝜂) + √𝛾𝑥𝛽(𝜂)
Ƌ𝜂

Ƌ𝑥
) 

                                𝑐𝑜𝑠𝑘𝑥𝑥 𝑠𝑖𝑛(𝜎𝑡)           ……(12) 

 

For the periodical function, 

2𝐺𝑘 (
1

√𝛾𝑧

𝛽1(𝜂) + √𝛾𝑥𝛽(𝜂)
Ƌ𝜂

Ƌ𝑥
) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Integration (12) can be resolved by integrating 𝑠𝑖𝑛(𝜎𝑡). 

𝜂(𝑥, 𝑡) =
2𝐺𝑘

𝛾𝑡,2𝜎
(

1

√𝛾𝑧

𝛽1(𝜂) + √𝛾𝑥𝛽(𝜂)
Ƌ𝜂

Ƌ𝑥
) 

                                                      𝑐𝑜𝑠𝑘𝑥𝑥 𝑐𝑜𝑠(𝜎𝑡) 

 

For the periodical function, 

𝐴 =
2𝐺𝑘

𝛾𝑡,2𝜎
(

1

√𝛾𝑧
𝛽1(𝜂) + √𝛾𝑥𝛽(𝜂)

Ƌ𝜂

Ƌ𝑥
)               …..(13) 

Where 𝐴 is wave amplitude. Hence, water surface elevation 

equation is presented as, 

𝜂(𝑥, 𝑡) = 𝐴 𝑐𝑜𝑠𝑘𝑥𝑥 𝑐𝑜𝑠(𝜎𝑡)                           …..(14) 

Ƌ𝜂

Ƌ𝑥
= −𝑘𝑥𝐴 sin 𝑘𝑥𝑥 cos 𝜎𝑡 

At the characteristic point, 𝑐𝑜𝑠𝑘𝑥𝑥 = 𝑠𝑖𝑛𝑘𝑥𝑥 dan 

𝑐𝑜𝑠(𝜎𝑡) = 𝑠𝑖𝑛(𝜎𝑡) 

Ƌ𝜂

Ƌ𝑥
= −

𝑘𝑥𝐴

2
 

Substituted to (13), obtaining a wave amplitude function 

equation as follows.  

𝐴 =
2𝐺𝑘

𝛾𝑡,2𝜎
(

1

√𝛾𝑧

𝛽1 (
𝐴

2
) − √𝛾𝑥𝛽 (

𝐴

2
)

𝑘𝑥𝐴

2
) 

Considering 𝑘𝑥 =
𝑘

√𝛾𝑥
 and taking out 𝛽 (

𝐴

2
) of the bracket, 

𝐴 =
2𝐺𝑘𝛽 (

𝐴
2

)

𝛾𝑡,2𝜎
(

1

√𝛾𝑧

𝛽1 (
𝐴
2

)

𝛽 (
𝐴
2

)
−

𝑘𝐴

2
) 

Based on the conservation law of wave number discussed in 

section (6), hence 𝛽 (
𝐴

2
) and 𝛽1 (

𝐴

2
) are constant, where 

𝛽1 (
𝐴
2

)

𝛽 (
𝐴
2

)
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

This constant value applies to all bodies of water, including 

both deep water and shallow water. In deep water where the 

bottom slope no longer has an effect, hence    

𝛽1 (
𝐴
2

)

𝛽 (
𝐴
2

)
= tan 𝑘 (ℎ +

𝐴

2
) ≈ 1 

This condition is achieved when, 

𝑘 (ℎ +
𝐴

2
) = 𝜃𝜋 

Where tanh 𝜃𝜋 ≈ 1, 𝜃 is referred to as the deep water 

coefficient. The equation for the wave amplitude function 

becomes: 

𝐴 =
2𝐺𝑘 cosh 𝜃𝜋

𝛾𝑡,2𝜎
(

tanh 𝜃𝜋

√𝛾𝑧
−

𝑘𝐴

2
)                            …..(15) 

This equation can be expressed as Equation for 𝐺, 

𝐺 =
𝜎𝛾𝑡,2𝐴

2𝑘(
tanh 𝜃𝜋

√𝛾𝑧
−

𝑘𝐴

2
) cosh 𝜃𝜋

                                  ……(16) 

 

VI. EQUATIONS OF CONSERVATION 

In its movement towards shallower waters, waves will 

undergo changes in its constants, namely 𝐺, 𝑘 and 𝐴. The 

governing equations controlling these changes are the 

conservation equation of wave number and the conservation 

equation of energy. 

a. Conservation Equation of Wave Number 

In the method of separating variables, it is stated that 𝑍(𝑧) 

is a function of 𝑧 only. For the velocity potential equation, 

𝑍(𝑧)is expressed as:  

𝑍(𝑧) = 𝛽(𝑧)  

As only function 𝑧, hence, 

Ƌ𝑍(𝑧)

Ƌ𝑥
= 𝛽1(𝑧)

Ƌ𝑘𝑧(ℎ + 𝑧)

Ƌ𝑥
= 0 

Hence   

Ƌ𝑘𝑧(ℎ + 𝑧)

Ƌ𝑥
= 0 

Substituting 𝑘𝑧 =
𝑘

√𝛾𝑧
 and according to the formulation of 𝐺 

equation, therefore  𝑧 =
𝐴

2
  is used. 

Ƌ𝑘(ℎ+
𝐴

2
)

Ƌ𝑥
= 0                                                 ……(17) 

This equation is the conservation equation of wave number. 

This equation shows that,, 

𝑘 (ℎ +
𝐴

2
) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

The constant value is found in deep water, i.e., 

tanh 𝑘 (ℎ +
𝐴

2
) ≈ 1  

Where tanh 𝜃𝜋 ≈ 1 and 𝜃 is the deep water coefficient, 

therefore,  

𝑘 (ℎ +
𝐴

2
) = 𝜃𝜋                                                ….(18) 

This equation is valid for all water depths, including deep 

water and shallow water. 

b. Conservation Equation of Energy 
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Substituting (10) into (5) using the properties of velocity 

potential, and working on the obtained equation with point 

characteristic properties, we get 

Ƌ2𝐺

Ƌ𝑥2 = 0                                                              …(19) 

Substituting (11) into (5) using the properties of velocity 

potential and considering (19) at characteristic points, we 

obtain  

𝐺
Ƌ𝑘

Ƌ𝑥
+ 2𝑘

Ƌ𝐺

Ƌ𝑥
= 0                                              ….(20) 

This is an energy conservation equation. 

 

VII. DEEP WATER WAVE LENGTH 

Hutahaean (2022) formulates the relationship between 

wavelength and wave height in deep water. By employing 

weighting coefficients in this study, the relationship 

between wavelength and wave height in deep water is, 

 

 𝐿0 =
𝜋(𝛾𝑡,2+

𝛾𝑧𝛾𝑡,3
2

)𝐻0

𝛾𝑡,3𝑡𝑎𝑛ℎ𝜃𝜋
                                         ….(21) 

𝐿0,𝑥 = 𝐿√𝛾𝑥 

𝐿0,𝑧 = 𝐿√𝛾𝑧 

 

Example calculation results of the wavelength for a wave 

amplitude 𝐴 = 1.2 m, with various values of 

weighting coefficients, are presented in Table (2). 

Table.2 Wave length at wave amplitude of 1.2 m. 

𝜀 

 

𝐿𝑥 

(m) 

𝐿𝑧 

(m) 

𝐻

𝐿𝑥

 

0.03 9.11 9.695 0.263 

0.032 9.161 9.839 0.262 

0.034 9.217 9.997 0.26 

0.036 9.279 10.172 0.259 

0.038 9.347 10.363 0.257 

0.04 9.421 10.573 0.255 

0.042 9.503 10.803 0.253 

0.044 9.592 11.055 0.25 

0.046 9.689 11.33 0.248 

 

In Table (2), the ε values represent the weighting 

coefficients, with the corresponding values available in 

Table (1). 

Table (2) includes two wavelengths: the horizontal 

wavelength 𝐿𝑥 and the vertical wavelength 𝐿𝑧. These 

wavelengths exhibit a slight difference, although both are 

present. It is noteworthy that a larger 𝜀 corresponds to a 

longer wavelength, resulting in a smaller wave steepness. 

Toffoli, A., Babanin, A., Onaroto, M., and Wased, T. 

(2010), determined that the critical wave steepness is 0.170, 

with a recommended upper limit of 0.200. To align with 

Toffoli et al.'s criteria and achieve a wave steepness closer 

to their recommendations, it is advisable to utilize a larger ε 

value. 

 

VIII. WAVE TRANSFORMATION MODEL 

This section demonstrates that the potential velocity 

encompasses the shoaling-breaking phenomenon. Notably, 

this phenomenon persists irrespective of whether the 

original Laplace equation (as proposed by Hutahaean 

(2023b)) or the weighting coefficients 𝛾𝑥 = 𝛾𝑧 = 1 are 

employed. The focus of this section is solely on illustrating 

that the shoaling-breaking phenomenon remains unaffected 

by the weighting coefficients in the Laplace equation. 

Within this context, the weighting coefficient plays a crucial 

role in influencing the breaking characteristics. 

Specifically, it impacts key parameters such as breaker 

height 𝐻𝑏 , breaker depth ℎ𝑏 and breaker length 𝐿𝑏. 

8.1. Shoaling Breaking Modeling 

The shoaling and breaking models are established based on 

conservation equations (17) and (20), incorporating 

equations governing the wave amplitude function (15) and 

the function 𝐺 (16). The detailed formulation process is 

elucidated in Hutahaean (2023b). The equations governing 

the changes in wave constants 𝑘, 𝐴, and 𝐺 as a wave travels 

from point 𝑥 to 𝑥 + 𝛿𝑥 are essential components of this 

approach.  

𝑑𝑘

𝑑𝑥
= −

4𝑘

(4ℎ+3𝐴)

𝑑ℎ

𝑑𝑥
                                            ……(22)  

Ƌ𝐴

Ƌ𝑥
=

𝐺

𝜎𝛾𝑡,2

Ƌ𝑘

Ƌ𝑥
(

tan 𝜃𝜋

√𝛾𝑧
−

𝑘𝐴

2
) cosh (𝜃𝜋)              ..…..(23) 

Furthermore, 

𝑘𝑥+𝛿𝑥 = 𝑘𝑥 + 𝛿𝑥
Ƌ𝑘

Ƌ𝑥
 

𝐴𝑥+𝛿𝑥 = 𝐴𝑥 + 𝛿𝑥
Ƌ𝐴

Ƌ𝑥
 

𝐺𝑥+𝛿𝑥 = 𝑒ln 𝐺𝑥−
1
2

(ln 𝑘𝑥+𝛿𝑥−ln 𝑘𝑥)
 

 

To demonstrate the outcomes of the shoaling-breaking 

model, an analysis was conducted in a coastal zone 

characterized by a bottom slope of 
𝑑ℎ

𝑑𝑥
= −0.02. The study 

utilized waves with a period of 8.0 seconds and a deep water 

wave amplitude of 𝐴0 = 1.2  meters. The deep water 
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coefficient 𝜃 = 1.60, and a weighting coefficient of 𝜀 =

0.042 was applied, with the specific values found in Table 

(1). The deep water wave number, 𝑘0, was calculated using 

equation (21), and the deep water wave height, ℎ0 =
𝜃𝜋

𝑘0
−

𝐴0

2
. Additionally, the deep water wave constant 𝐺0 was 

calculated using equation (16). The results of the shoaling-

breaking model are visually presented in Figure (1), 

offering a comprehensive illustration of the dynamic 

behavior in the coastal zone under the specified conditions. 

 

Fig.1: The outcome of shoaling-breaking modeling 

 

In Fig(1), it can be observed that the model is able to 

simulate shoaling and breaking phenomena effectively. 

Details regarding breaking characteristics, including 

breaker height 𝐻𝑏 , breaker depth ℎ𝑏 and breaker length𝐿𝑏, 

are discussed in another section. 

8.2 Refraction-Diffraction Analysis 

Utilizing the shoaling-breaking equations, the formulation 

of refraction-diffraction equations is established, as detailed 

in Hutahaean (2023b). The application of the refraction-

diffraction model is demonstrated on bathymetry featuring 

a headland configuration (Fig. (2)), considering waves with 

a period of 8 seconds and a deep water wave amplitude of 

1.20 meters. The resulting 2-D contour image depicting 

wave height from the refraction-diffraction model is 

presented in Fig. (3), while Fig. (4) illustrates the 3-D wave 

height contour.  

   

 

 

 

 

 

 

Fig.2: Batimetri tanjong contour 

The model implementation involves a deep water 

coefficient of 𝜃 = 1.60 and an optimization coefficient of 

𝜀 = 0.042, providing insights into wave behavior in the 

presence of bathymetric features and headlands. 

           

Fig.3: Wave height 2-D Contour 

         

Fig.4: wave height 3-D Contour 

 

In the analysis of refraction-diffraction results, a notable 

concentration of wave energy is observed at the center of 

the headland, coinciding with the point where breaking 

occurs. Both the shoaling-breaking model and the 

refraction-diffraction model incorporate equations 

involving the wave amplitude function, wave number 

conservation, and energy conservation to collectively 

simulate the processes of shoaling and breaking. These 

equations include weighting coefficients. 

To determine suitable values for these weighting 

coefficients, an examination will be conducted using 

breaker index equations, as elaborated upon in the 

subsequent section.. 
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IX. BREAKING INDEXES EQUATIONS. 

In the preceding section, it has been demonstrated that the 

developed equations can effectively simulate shoaling and 

breaking. In this section, breaking indexes equations are 

formulated, and the role of corresponding weighting 

coefficients is studied. 

9.1.Equation  breaking.   

The breaking equation is present in both the wave amplitude 

function Equation (15) and the wave constant Equation 𝐺 

(16). Breaking occurs when, 

tanh 𝜃𝜋

√𝛾𝑧
−

𝑘𝐴

2
= 0                                             ……(24) 

Based on Equation (24), breaker indexes are formulated, 

including the breaker length index, breaker depth index, and 

breaker height index. 

 

9.2. Breaker Length Index Equation 

Equation (24) can be expressed as,  

𝑘𝐴

2
=

tanh 𝜃𝜋

√𝛾𝑧

 

Considering 𝑘𝑥 =
𝑘

√𝛾𝑥
 or 𝑘 = 𝑘𝑥√𝛾𝑥 and 𝑘𝑥 =

2𝜋

𝐿𝑥
  hence   

𝐻𝑏

𝐿𝑏,𝑥
=

2 tanh 𝜃𝜋√𝛾𝑥

𝜋√𝛾𝑧
                                         ……(25) 

𝐻𝑏  represents the breaking wave height, while 𝐿𝑥,𝑏  is the 

horizontal wavelength at the breaker point. In Equation 

(25), there are weighting coefficients, namely 𝛾𝑥 and 𝛾𝑧, 

indicating the influence of weighting coefficients on 

breaking characteristics in this equation. In Table (3), the 

calculation of  
𝐻𝑏

𝐿𝑏,𝑥
 is presented for various values of 𝜀 and 

𝜃, where 𝜃1 = 1.60, 𝜃2 = 1.70, 𝜃3 = 1.80 and 𝜃1 = 1.90. 

The values of  tanh 𝜃𝜋 include, 

tanh 1.6𝜋 = 0.999914 

tanh 1.7𝜋 = 0.999954 

tanh 1.8𝜋 = 0.999975 

tanh 1.9𝜋 = 0.999987 

All of them ≈ 1.  

Table.3 The value of 
𝐻𝑏

𝐿𝑏,𝑥
 on different 𝜀 and 𝜃 

𝜀 𝜃1 𝜃2 𝜃3 𝜃4 

0.03 0.565 0.565 0.565 0.565 

0.032 0.555 0.555 0.555 0.555 

0.034 0.545 0.545 0.545 0.545 

0.036 0.535 0.535 0.535 0.535 

0.038 0.524 0.524 0.524 0.524 

0.04 0.513 0.513 0.513 0.513 

0.042 0.502 0.502 0.502 0.502 

0.044 0.49 0.49 0.49 0.49 

0.046 0.479 0.479 0.479 0.479 

In Table (3), it can be observed that as the value of 𝜀 

increases, the value of 
𝐻𝑏

𝐿𝑏,𝑥
 decreases. Meanwhile, 

concerning the deep water coefficient 𝜃, the value of 
𝐻𝑏

𝐿𝑏,𝑥
 

remains constant, as this is only considered up to the third 

decimal place. If examined up to the fifth decimal place, the 
𝐻𝑏

𝐿𝑏,𝑥
 value increases with an increase in the 𝜃 value. 

9.3. Breaker Depth Index Equation. 

Defined as 

tanh 𝑘 (ℎ +
𝐴

2
) = 𝛼𝑘 (ℎ +

𝐴

2
) 

Substituting to (24), 

𝛼𝑘 (ℎ +
𝐴
2

)

√𝛾𝑧

−
𝑘𝐴

2
= 0 

𝛼𝑘 (ℎ +
𝐴

2
) −

√𝛾𝑧𝑘𝐴

2
= 0 

𝛼𝑘ℎ +
𝛼𝑘𝐴

2
−

√𝛾𝑧𝑘𝐴

2
= 0 

𝛼 − (√𝛾𝑧 − 𝛼)
𝐴

2ℎ
= 0 

𝑘 (ℎ +
𝐴

2
) = 𝜃𝜋 hence , 

Substituting to Equation  𝛼, 

𝛼 =
tanh 𝜃𝜋

𝜃𝜋
 

At breaker point and on the sinusoidal wave, 𝐴 =
𝐻

2
 applies 

tanh 𝜃𝜋

𝜃𝜋
− (√𝛾𝑧 −

tanh 𝜃𝜋

𝜃𝜋
)

𝐴

2ℎ
= 0 

tanh 𝜃𝜋 − (𝜃𝜋√𝛾𝑧 − tanh 𝜃𝜋)
𝐻𝑏

4ℎ𝑏

= 0 

𝐻𝑏

ℎ𝑏
=

4 tanh 𝜃𝜋

(𝜃𝜋√𝛾𝑧−tanh 𝜃𝜋)
                        ………………..(26) 

This equation represents the breaker depth index, where ℎ𝑏 

is the breaker depth. In equation (26), there is a weighting 

coefficient denoted as 𝛾𝑧. Table (4) presents the results of 

the calculation of equation (26) for various values of 𝜃 and 

several values of 𝜀. In the table, 𝜃1 = 1.60, 𝜃2 = 1.70, 𝜃3 =

1.80 and 𝜃1 = 1.90. 
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Table.4 the value of 
𝐻𝑏

ℎ𝑏
 on several values of 𝜀 and 𝜃 

𝜀 𝜃1 𝜃2 𝜃3 𝜃4 

0.03 0.869 0.808 0.754 0.708 

0.032 0.853 0.793 0.741 0.695 

0.034 0.836 0.777 0.726 0.682 

0.036 0.819 0.762 0.712 0.668 

0.038 0.801 0.745 0.697 0.654 

0.04 0.783 0.728 0.681 0.639 

0.042 0.764 0.711 0.665 0.625 

0.044 0.745 0.694 0.649 0.61 

0.046 0.726 0.676 0.633 0.594 

 

The results in Table (4) indicate that the value of 
𝐻𝑏

ℎ𝑏
 

decreases with an increase in 𝜀 and also decreases with an 

increase in 𝜃. For a constant value of 𝐻𝑏 , the decrease in 
𝐻𝑏

ℎ𝑏
  

with an increase in 𝜃 suggests a deeper breaker depth. 

According to Mc. Cowan's criteria (1894), where 
𝐻𝑏

ℎ𝑏
=

0.78, and considering the calculation of the breaker height 

ℎ𝑏 in subsection (9.5), resulting in 𝜀 = 0.038 − 0.046, the 

appropriate 𝜃 value is therefore 1.60. 

9.4 Breaker depth-length index. 

Equation (25) is written as an equation for 𝐻𝑏  and 

substituted into (26), resulting in the breaker depth-length 

index equation, denoted as Equation (27). 

ℎ𝑏

𝐿𝑏,𝑥
= (

𝜃

2
−

tanh 𝜃𝜋

2𝜋√𝛾𝑧
) √𝛾𝑥                                    ….(27) 

Condition 
ℎ

𝐿
≥ 1 represents deep water conditions. Breaking 

due to bathymetry occurs in shallow water where 
ℎ

𝐿
< 1 

hence, (27) must be less than 1. Table (5) illustrates the 

values of 
ℎ𝑏

𝐿𝑏,𝑥
 for = 1.60 and 𝜃 = 2.30 

Table.5 Provides an overview of the values of 
ℎ𝑏

𝐿𝑏
 

concerning the deep water coefficient 𝜃. 

𝜀 𝜃 = 1.60 𝜃 = 2.30 

 

ℎ𝑏

𝐿𝑏,𝑥

 
𝐻𝑏

ℎ𝑏

 
ℎ𝑏

𝐿𝑏,𝑥

 
𝐻𝑏

ℎ𝑏

 

0.03 0.65 0.869 0.996 0.567 

0.032 0.651 0.853 0.997 0.557 

0.034 0.652 0.836 0.997 0.547 

0.036 0.653 0.819 0.998 0.536 

0.038 0.655 0.801 0.998 0.525 

0.04 0.656 0.783 0.999 0.514 

0.042 0.657 0.764 0.999 0.502 

0.044 0.658 0.745 1 0.491 

0.046 0.659 0.726 1 0.479 

 

From Table (5), it is evident that as the value of ε increases, 

the value of 
ℎ𝑏

𝐿𝑏,𝑥
, also increases, and as 𝜃 increases, the value 

of 
ℎ𝑏

𝐿𝑏,𝑥
 also increases. At 𝜃 = 2.30, the value of 

ℎ𝑏

𝐿𝑏,𝑥
  

approaches 1. It can be concluded that the value of 𝜃 must 

be less than 2.30. 

9.5. Breaker Height  Index Equation, 
𝐻𝑏

𝐻0
. 

The breaker height index is the ratio of the breaker height to 

the wave height in deep water, denoted as 
𝐻𝑏

𝐻0
. The wave 

energy for a single wavelength is given by the equation: 

𝐸 = 𝑐𝐸𝜌𝑔𝐻2𝐿 

where 𝑐𝐸  is the energy coefficient. In the linear wave theory 

(Dean (1991)), 𝑐𝐸 =
1

8
.  In this context, the value of 𝑐𝐸  is not 

influential as it cancels out in the energy conservation 

equation. By equating the wave energy at the breaker point 

to the wave energy in deep water, we obtain Equation (28): 

𝐻𝑏
2𝐿𝑏 = 𝐻0

2𝐿0                                                ……(28) 

Equation (25) can be expressed as an equation for 𝐿𝑏 and 

substituted into (28). Meanwhile, 𝐿0 is substituted with 

(21), resulting in Equation (29): 

𝐻𝑏

𝐻0
= (

2√𝛾𝑥(𝛾𝑡,2+
𝛾𝑧𝛾𝑡,3

2
)

𝛾𝑡,3√𝛾𝑧
)

1
3⁄

                                ….(29) 

In this equation, there are no parameters for the deep water 

coefficient 𝜃 and wave period. Therefore, the breaker height 

is solely determined by the deep water wave height 𝐻0  and 

the weighting coefficient. 

To illustrate the influence of the weighting coefficient on 

the breaker height index 
𝐻𝑏

𝐻0
 and the breaker height 𝐻𝑏 , the 

results are presented in Table (6). The calculated breaker 

height is compared with the breaker height from Komar, 

Paul D., and Gaughan, Michael K. (1968): 

𝐻𝑏 = 0.39 𝑔
1

5⁄ (𝑇𝐻0)
2

5⁄   m. 

In this equation, the wave period 𝑇, is set to 8 seconds, and 

two different deep water wave heights 𝐻0 of 2.00 m and 

2.40 m are used. In Table (6), 𝐻𝑏−29 is the result of Equation 

(29) multiplied by 𝐻0. 

In Table (6), an observable trend is noted: as 𝜀 increases, the 

breaker height decreases. Following the Komar-Gaughan 

equation, a breaker height 𝐻0 = 2.00 𝑚 is achieved at 𝜀 =
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0.038, while for a higher initial wave height 𝐻0 = 2.40 𝑚, 

the corresponding 𝜀 = 0.046. However, it is challenging to 

precisely determine ε from these findings. For a wave height 

of 2.40 m and a wave period of 8 seconds, identified as the 

maximum in that period, a pragmatic approach suggests 

using 𝜀 = 0.042 for wave heights below the maximum. 

Table.6 Presents the calculated breaker height 𝐻𝑏 . 

𝜀 

 

𝐻𝑏

𝐻0

 

𝐻0 = 2.0 𝑚 𝐻0 = 2.4 𝑚 

𝐻𝑏−29 𝐻𝑏−𝐾 𝐻𝑏−29 𝐻𝑏−𝐾 

0.03 1.267 2.534 2.463 3.041 2.85 

0.032 1.259 2.518 2.463 3.021 2.85 

0.034 1.25 2.501 2.463 3.001 2.85 

0.036 1.241 2.483 2.463 2.979 2.85 

0.038 1.232 2.464 2.463 2.957 2.85 

0.04 1.222 2.444 2.463 2.933 2.85 

0.042 1.212 2.424 2.463 2.909 2.85 

0.044 1.202 2.403 2.463 2.884 2.85 

0.046 1.191 2.382 2.463 2.858 2.85 

 

The study of breaker indexes underscores the substantial 

impact of weighting coefficients on breaking parameters. 

Consequently, employing the weighted Laplace equation in 

modeling wave dynamics is anticipated to yield more 

accurate and reliable results for breaking parameters. 

The results of this study also indicate that the appropriate 

deep water coefficient is 𝜃 = 1.60, with a value of 𝜀 =

0.042, along with weighting coefficients:  

𝜀 𝛾𝑡,2 𝛾𝑡,3 𝛾𝑥 𝛾𝑧 

0.042 1.99626 3.1097 0.97831 1.26448 

 

X. CONCLUSION 

The Weighted Taylor series refers to a truncated Taylor 

series that is transformed into a first-order series with 

significantly reduced truncation errors, and in some cases, 

without any errors. Utilizing the weighted Taylor series for 

formulating the continuity equation and Laplace equation 

results in the creation of the weighted continuity equation 

and weighted Laplace equation, characterized by minimal 

truncation errors. Consequently, constructing a water wave 

model using the weighted Laplace equation enhances the 

model's accuracy. 

The pivotal role of weighting coefficients cannot be 

overstated, as they play a crucial role in determining wave 

characteristics such as wavelength and breaking parameters, 

including breaker height, depth, and length. This 

underscores the importance of utilizing the weighted 

Laplace equation in water wave modeling. Furthermore, 

since water wave modeling is inherently based on velocity 

potential, employing the weighted Laplace equation is 

deemed more effective. 

In situations where the latest data from physical model 

research is available and reliable, the values of weighting 

coefficients can be easily adjusted to fine-tune the model. 

This adaptability enhances the applicability and accuracy of 

the water wave model, making it a valuable tool in studying 

water wave behavior. 
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