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Abstract— In this research, the governing equation for wave diffraction at 

a breakwater gap is formulated. The equation is derived by substituting the 

three-dimensional velocity potential—obtained as the solution to the 

Laplace equation—into the Laplace equation, under the condition that there 

is a variation or differential in the wave constants. The resulting equation is 

a second-order partial differential equation with respect to one of the wave 

constants. The governing equation is then solved numerically using the 

Finite Difference Method, employing the Successive Over Relaxation (SOR) 

technique for the iterative calculation. 

 

I. INTRODUCTION 

Considering the needs of proper ports and the limited 

availability of naturally sheltered waters, there is an 

increasing trend toward the construction of enclosed ports, 

which are protected by breakwaters. The primary function 

of the breakwater in this context is to attenuate waves from 

the open sea, thereby creating a calm, sheltered area on the 

leeward side. This reduction in wave activity is essential to 

facilitate safe and efficient loading and unloading 

operations for vessels. An illustration of an enclosed port 

protected by breakwaters is presented in Figure (1). 

Waves from the open sea can enter the sheltered area 

through the breakwater opening or entrance. The wave 

conditions within the lee side are primarily influenced by 

the width of this entrance. However, the entrance width is 

mainly determined by navigational safety and the 

operational needs of ship traffic, meaning that reducing the 

wave height on the lee side cannot simply be achieved by 

narrowing the entrance. The berthing zone is a critical area 

that must be ensured safe and calm. In cases where 

navigational requirements necessitate a wide entrance, 

leading to significant wave penetration into the berthing 

area, the distance between the entrance and the berthing 

zone is typically extended to create a calmer environment 

for vessel operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: Enclosed Port 

 

To analyze the wave conditions within the lee side, wave 

diffraction models are commonly applied to simulate wave 

behavior at the breakwater opening. These models have 

been extensively developed, generally utilizing time series 

models. 

Berthing area 

Lee side 

Entrance 

b
re

ak
w

at
e

r 

Incoming wave 

https://ijaers.com/
https://dx.doi.org/10.22161/ijaers.125.6
http://www.ijaers.com/
mailto:syawalf1@yahoo.co.id


Hutahaean                                                          International Journal of Advanced Engineering Research and Science, 12(5)-2025 

www.ijaers.com                                                                                                                                                                              Page | 39  

In the present research, a wave diffraction model is 

developed based on the velocity potential equation, which 

is a solution to the Laplace equation. The adoption of a 

velocity potential-based approach aims to develop a model 

that is both simpler and more practical to apply in 

engineering analyses. 

 

II. THE GOVERNING EQUATION 

The velocity potential for a wave propagating along the 

horizontal axis 𝜉, is given as the solution to the Laplace 

equation, as presented by Dean (1991): 

𝜙(𝜉, 𝑧, 𝑡) = 𝐺(cos 𝑘𝜉 + sin 𝑘𝜉 ) 

                                      cosh 𝑘(ℎ + 𝑧) sin 𝜎𝑡       . . . (1)   

 

Where 𝑘 =
2𝜋

𝐿
 is the wave number, 𝐿 is the wavelength , 

𝜎 =
2𝜋

𝑇
, 𝑇 is the wave period  and 𝐺 is the wave constant. 

 

The horizontal axis 𝜉 is inclined at an angle 𝛼 relative to the 

𝑥 on (𝑥, 𝑦), Fig (2). The velocity potential of the wave in 

the (𝑥, 𝑦, 𝑧) as proposed by Dean (1991) is, 

 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝐺(cos 𝑘(𝑥 cos 𝛼) + sin 𝑘(𝑦 sin 𝛼) ) 

                                            cosh 𝑘(ℎ + 𝑧) sin 𝜎𝑡 … (2)   

 

 

 

 

 

 

 

 

Fig.2: Axis system. 

 

Laplace’s equation for the three-dimensional Cartesian 

coordinate system (𝑥, 𝑦, 𝑧) is, 

Ƌ2𝜙

Ƌ𝑥2
+

Ƌ2𝜙

Ƌ𝑦2
+

Ƌ2𝜙

Ƌ𝑧2
= 0                                        … (3) 

The substitution of (2) to (3) by introducing the differentials  

𝐺 and 𝑘, a set of differential equations for 𝐺 and 𝑘 is 

formed. This derivation is further simplified by considering 

the characteristic point where   

cos 𝑘(𝑥 cos 𝛼) + sin 𝑘(𝑦 sin 𝛼) 

                        = sin 𝑘(𝑥 cos 𝛼) + cos 𝑘(𝑦 sin 𝛼) 

The conservation equation for 𝐺 is, 

Ƌ2𝐺

Ƌ𝑥2
+

Ƌ2𝐺

Ƌ𝑦2
= 0                                                     . . . (4) 

This equation is used as the governing equation for 

modeling diffraction at a breakwater gap. In this research, 

diffraction is defined as the spreading or transfer of wave 

energy in the lateral direction. Accordingly, in Equation (4), 

the wave direction is along the x-axis, while energy transfer 

occurs along the y-axis. 

Equation (4) serves as the governing equation for modeling 

wave diffraction through the breakwater gap. Notably, this 

equation does not incorporate the water depth variable, 

limiting its applicability to scenarios with uniform water 

depth. Nevertheless, even under constant depth conditions, 

variations in 𝐺  may still occur due to diffraction processes, 

which redistribute wave energy and subsequently alter the 

wave amplitude. Although Equation (4) was formulated 

under the assumption that 𝑘 may vary spatially, no 

differentials of 𝑘 appear in the equation itself. Therefore, in 

practical applications, 𝑘 is treated as a constant, typically 

corresponding to its value at the entrance of the breakwater. 

Hutahaean (2023) proposed a wave amplitude function 

describing the relationship between the wave amplitude 𝐴 

and 𝐺, 𝑘 and 𝜎. This formulation was later refined by 

Hutahaean (2025), who introduced an updated weighting 

coefficient within the truncated Taylor series expansion, 

yielding: 

𝐴 =
2𝐺𝑘

𝛾𝑡,2𝜎
cosh  𝜃𝜋 (tanh 𝜃𝜋 −

𝛾𝑥,2𝑘𝐴

2
)          … (5) 

Hutahaean (2025), also obtained another form of wave 

amplitude function as follows 

𝐴 =
√2 𝐺𝑘

𝛾𝑡,2𝜎
sinh  𝜃𝜋                                             … (6) 

In Equations (5) and (6), 𝛾𝑡,2 and 𝛾𝑥,2 represent weighting 

coefficient. In the present research, these coefficients are 

taken as 𝛾𝑡,2 = 1.999773, 𝛾𝑥,2 = 0.999733. The detailed 

formulation of these weighting coefficients can be found in 

Hutahaean (2025). The parameter 𝜃 in both equations 

denotes the deep water coefficient, for which tanh 𝜃𝜋 ≈

1.0 in this research is 𝜃 = 3. With identical inputs, both 

Equations (5) and (6) yield the same wave amplitude. 

Once the value of 𝐺 on the lee side from (4) is obtained, the 

wave amplitude 𝐴 and wave height 𝐻, could be measured 

based on the wave number  𝑘 at the entrance. 

 

Solving Equation (4) requires the specification of the 𝐺 

value at the entrance. When the entrance is situated in deep 

water, the wave constants can be calculated using the 

following equations: 

𝑘0 =
tanh 𝜃𝜋

𝛾𝑥,2𝐴0

(2 − √2)                                   … (7) 

𝜎2 =
𝑔𝑘0 tanh  𝜃𝜋  

√2𝛾𝑡,2𝛾𝑡,3

                                         … . (8) 

𝛾𝑡,3 = 3.049333 is the weighting coefficient,   𝐴0 is the 

known wave amplitude at deep water depth. The derivation 
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of these equations is presented in Hutahaean (2025). The 

condition for deep water depth is given by, 

ℎ0 ≥
𝜃𝜋

𝑘0

−
𝐴0

2
                                                       … (9)  

Both Equations (5) and (6) can be rearranged to express 𝐺 

as a function of the wave amplitude 𝐴 as follows: 

𝐺0 =
𝛾𝑡,2𝜎𝐴0

2 𝑘0 cosh  𝜃𝜋 (tanh 𝜃𝜋 −
𝛾𝑥,2𝑘0𝐴0

2
)

  … (10) 

𝐺0 =
𝛾𝑡,2𝜎𝐴0

√2 𝑘0 sinh  𝜃𝜋
                                         … . (11) 

Using these equations, the value of 𝐺0 at the entrance can 

be calculated. Table (1) presents the computed values of 𝑘0, 

𝜎, 𝐺0 and ℎ0  for several wave amplitudes 𝐴0, where the 

wave height 𝐻0 = 2 𝐴0. In scenarios where the entrance is 

located at a water depth h ℎ <  ℎ0, a wave transformation 

analysis is required to adjust for the depth transition from 

ℎ0to ℎ. 

 

Table 1: Wave constant at deep water. 

𝐻0 

(m) 

𝑘0 

(m-1) 

𝜎 

(sec-1) 

ℎ0 

(m) 

𝐺0 

(m.m/sec) 

1 1.173 1.146 7.786 0.00011 

1.2 0.977 1.046 9.343 0.00015 

1.4 0.838 0.969 10.9 0.00018 

1.6 0.733 0.906 12.458 0.00023 

1.8 0.652 0.854 14.015 0.00027 

2 0.586 0.81 15.572 0.00032 

2.2 0.533 0.773 17.129 0.00036 

2.4 0.489 0.74 18.686 0.00041 

2.6 0.451 0.711 20.244 0.00047 

2.8 0.419 0.685 21.801 0.00052 

 

III. NUMERICAL SOLUTION 

Equation (4) is classified as an elliptic partial differential 

equation, which represents a boundary value problem 

requiring appropriate boundary conditions for its solution. 

The boundary conditions applied in this research are as 

follows:,  

 

a. A Dirichlet boundary condition is applied at the 

breakwater entrance, where the value of 𝐺 = 𝑐,  

where 𝑐 is a known constant. 

b. A Neuman boundary condition, representing a 

solid boundary, is applied along the breakwater 

walls on the lee side, expressed as: 
Ƌ𝐺

Ƌ𝑛
= 0, where 

𝑛 is the axis normal to the breakwater wall. Along 

the wall parallel to the axis 𝑦, 
Ƌ𝐺

Ƌ𝑛
=

Ƌ𝐺

Ƌ𝑥
= 0 while 

long the wall parallel to the axis-𝑥, 
Ƌ𝐺

Ƌ𝑛
=

Ƌ𝐺

Ƌ𝑦
= 0. 

The locations where these boundary conditions are applied 

are illustrated in Fig. (3). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: Breakwater sketch and the boundary conditions. 

 

3.1. Finite Difference Method. 

Equation (4) is solved using the Finite Difference Method 

(FDM), in which the computational domain is discretized 

into a finite number of grid points (Fig. (4)). The governing 

equation is applied and solved at each grid point within the 

domain, except at the entrance point. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4: The division of the computational domain into a 

grid of discrete points. 

 

The finite difference equations are formulated and applied 

at each grid point within the domain, based on the approach 

described by Arden, Bruce W., and Astill, Kenneth N. 

(1970): 

a. At interior points within the domain, the central 

difference scheme is employed 

𝛿𝑥 
𝛿𝑦 

i 

j 

(i,j) 

breakwater 

breakwater 

Interior point 

Solid boundary point 

In
co

m
in

g 
w

av
e

 

Ƌ𝐺

Ƌ𝑦
= 0 

Ƌ𝐺

Ƌ𝑦
= 0 

Ƌ𝐺

Ƌ𝑥
= 0 

Ƌ𝐺

Ƌ𝑥
= 0 

Ƌ𝐺

Ƌ𝑥
= 0 

𝐺 = 𝑐 
Ƌ2𝐺

Ƌ𝑥2
+

Ƌ2𝐺

Ƌ𝑦2
= 0 

𝑥 

𝑦 

breakwater 

breakwater 

b
re

ak
w

at
e

r 

http://www.ijaers.com/


Hutahaean                                                          International Journal of Advanced Engineering Research and Science, 12(5)-2025 

www.ijaers.com                                                                                                                                                                              Page | 41  

Ƌ2𝐺

Ƌ𝑥2
=

𝐺𝑖+1,𝑗 − 2𝐺𝑖,𝑗 + 𝐺𝑖−1,𝑗

𝛿𝑥2
 

Ƌ2𝐺

Ƌ𝑦2
=

𝐺𝑖,𝑗+1 − 2𝐺𝑖,𝑗 + 𝐺𝑖,𝑗+1

𝛿𝑦2
 

Substituting these expressions into Equation (4)  

𝐺𝑖+1,𝑗 − 2𝐺𝑖,𝑗 + 𝐺𝑖−1,𝑗

𝛿𝑥2
+

𝐺𝑖,𝑗+1 − 2𝐺𝑖,𝑗 + 𝐺𝑖,𝑗+1

𝛿𝑦2
= 0 

This can be rearranged into the standard finite difference 

equation: 

2 (1 +
𝛿𝑥2

𝛿𝑦2
) 𝐺𝑖,𝑗 = 𝐺𝑖+1,𝑗 + 𝐺𝑖−1,𝑗 

                                   +
𝛿𝑥2

𝛿𝑦2
(𝐺𝑖,𝑗+1 + 𝐺𝑖,𝑗−1) … (9) 

b. At the solid boundary point  

b.1. At the left breakwater (Neuman boundary), a forward 

difference scheme is used: 

Ƌ𝐺

Ƌ𝑥
=

𝐺𝑖+1,𝑗 − 𝐺𝑖,𝑗

𝛿𝑥
= 0 

Thus, 

𝐺𝑖,𝑗 = 𝐺𝑖+1,𝑗                                                      … . . (10) 

b.2 At the right breakwater, a backward difference scheme 

is applied: 

Ƌ𝐺

Ƌ𝑥
=

𝐺𝑖,𝑗 − 𝐺𝑖−1,𝑗

𝛿𝑥
= 0 

𝐺𝑖,𝑗 = 𝐺𝑖−1,𝑗                                                      … . . (11) 

b.3. At the lower breakwater, a backward difference scheme 

is applied: 

Ƌ𝐺

Ƌ𝑦
=

𝐺𝑖,𝑗+1 − 𝐺𝑖,𝑗

𝛿𝑦
= 0 

𝐺𝑖,𝑗 = 𝐺𝑖,𝑗+1                                                       … . . (12) 

b.4. At the upper breakwater, a backward difference scheme 

is applied: 

Ƌ𝐺

Ƌ𝑦
=

𝐺𝑖,𝑗 − 𝐺𝑖,𝑗−1

𝛿𝑥
= 0 

𝐺𝑖,𝑗 = 𝐺𝑖,𝑗−𝑗                                                      … . . (13) 

The grid points involved (𝑖, 𝑗), (𝑖 + 1, 𝑗), (𝑖 − 1, 𝑗), 

(𝑖, 𝑗 + 1) and (𝑖, 𝑗 − 1) are presented in Fig (5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5: Points on FDM. 

 

3.2. Calculation Method 

The numerical solution of Equation (4) is performed 

iteratively using the Successive Over Relaxation (SOR) 

method, as described by Chow, C.Y. (1979). The steps of 

the calculation procedure are as follows: 

1. The initial iteration value is defined at all points 

except the entrance point, where 𝐺𝑖,𝑗 = 0. 

2. At the interior point 𝐺𝑖,𝑗 is calculated using 

equation (9). 

3. At the boundary point, 𝐺𝑖,𝑗 is calculated using 

equation (10), (11), (12) and (13). 

4. The convergence of all points is checked by 

verifying that |𝐺𝑖,𝑗
𝑛𝑒𝑤 − 𝐺𝑖,𝑗

𝑜𝑙𝑑| ≤ 𝜇, where 𝜇 is a small 

positive tolerance, for example 𝜇 = 0.01. 

5. If any point has not converged, the process returns 

to Step 2, and the new values of 𝐺𝑖,𝑗 are recalculated.  

Convergence is achieved after a large number of iterations. 

In this research, with 29,584 points, convergence is attained 

after 3,000 iterations. Generally, the greater the number of 

points, the greater the number of iterations required. 

The purpose of using this iterative method is to avoid the 

formation of simultaneous equations or matrices of very 

large size. This consideration is important since a small grid 

size is necessary, resulting in a very large number of points, 

often reaching tens of thousands. For example, for a domain 

size of 150 m × 150 m, with a grid size of 0.876 m, there are 

29,584 points. Without the iterative method, this would 

require solving a matrix of size 29,584 × 29,584.  

3.3. Grid size 

The finite difference equations are formulated based on 

truncating the Taylor series to order 1 or order 2, with the 

rationale that at sufficiently small grid sizes, the higher-

order terms become negligible and can be ignored. Thus, the 

grid size in the finite difference method (FDM) is chosen 

such that the higher-order terms in the Taylor series can be 

safely omitted. 

(𝑖−, 𝑗) (𝑖, 𝑗) (𝑖 − 1, 𝑗) 

(𝑖, 𝑗 + 1) 

(𝑖, 𝑗 − 1) 

δx δx 

δy 
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Taylor series for a function 𝑥, 

𝑓(𝑥 + 𝛿𝑥) = 𝑓(𝑥) + 𝛿𝑥 
𝑑𝑓

𝑑𝑥
+

𝛿𝑥2

2

𝑑2𝑓

𝑑𝑥2
+ 

                        
𝛿𝑥3

3!

𝑑3𝑓

𝑑𝑥3
+ ⋯ 

For the Taylor series to be truncated at first order only, the 

following condition must hold, 

|

𝛿𝑥2

2
𝑑2𝑓
𝑑𝑥2 +

𝛿𝑥3

3!
𝑑3𝑓
𝑑𝑥3 + ⋯

𝛿𝑥 
𝑑𝑓
𝑑𝑥

| ≤ 𝜀𝑥                     … (14) 

 

As a first approximation, it is assumed that 𝛿𝑥 is very small 

|
𝛿𝑥3

3!

𝑑3𝑓

𝑑𝑥3 +
𝛿𝑥4

4!

𝑑4𝑓

𝑑𝑥4 + ⋯ | ≪ |
𝛿𝑥2

2

𝑑2𝑓

𝑑𝑥2|. Therefore, equation 

(14) can be simplified as 

|

𝛿𝑥2

2
𝑑2𝑓
𝑑𝑥2

𝛿𝑥 
𝑑𝑓
𝑑𝑥

| ≤ 𝜀𝑥 

Or, 

|

𝛿𝑥
2

𝑑2𝑓
𝑑𝑥2

 
𝑑𝑓
𝑑𝑥

| ≤ 𝜀𝑥 

 

Equation (4) is derived from the Laplace equation, whose 

solution is a sinusoidal function. Therefore, the function 

𝑓(𝑥) is taken as a sinusoidal function. 

𝑓(𝑥) = cos 𝑘𝑥 

𝑑𝑓

𝑑𝑥
= −𝑘 sin 𝑘𝑥 

 

𝑑2𝑓

𝑑𝑥2
= −𝑘2 cos 𝑘𝑥 

 

|

𝛿𝑥
2

𝑘 cos 𝑘𝑥

sin 𝑘𝑥
| ≤ 𝜀 

At the characteristic point where cos 𝑘𝑥 = sin 𝑘𝑥, 

𝛿𝑥

2
𝑘 ≤ 𝜀𝑥 

considering 𝑘 =
2𝜋

𝐿
 and taking the equality sign yields, 

𝛿𝑥 =
𝜀𝑥

𝜋
𝐿                                                             … (15) 

Equation (15) gives a very small grid size. To allow for a 

larger grid size, the Taylor series expansion is extended up 

to the fourth order, under the assumption that,  

 

|
𝛿𝑥5

5!

𝑑5𝑓

𝑑𝑥5
+

𝛿𝑥6

6!

𝑑6𝑓

𝑑𝑥6
+ ⋯ | ≪ 

                                 |
𝛿𝑥2

2

𝑑2𝑓

𝑑𝑥2
+

𝛿𝑥3

3!

𝑑3𝑓

𝑑𝑥3
+

𝛿𝑥4

4!

𝑑4𝑓

𝑑𝑥4
| 

 

Equation (14) becomes, 

 

|

𝛿𝑥2

2
𝑑2𝑓
𝑑𝑥2 +

𝛿𝑥3

3!
𝑑3𝑓
𝑑𝑥3 +

𝛿𝑥4

4!
𝑑4𝑓
𝑑𝑥4

𝛿𝑥 
𝑑𝑓
𝑑𝑥

| ≤ 𝜀𝑥           … (16) 

 

Following similar steps, the equation for 𝛿𝑥 is obtained as a 

cubic polynomial, 

𝛿𝑥

2

2𝜋

𝐿
−

𝛿𝑥2

3!
(

2𝜋

𝐿
)

2

−
𝛿𝑥3

4!
(

2𝜋

𝐿
)

3

− 𝜀𝑥 = 0   . (17) 

 

Table (1) presents the results of the grid size calculations for 

waves with a wavelength of 16,072 m. It is evident that the 

grid size obtained from equation (17) is larger than that from 

equation (15). This indicates that using a longer Taylor 

series allows for a larger grid size. Since equation (17) is 

formulated using a fourth-order Taylor series, it provides 

better accuracy than equation (15). 

Table.2: Grid size calculation results 

𝜀𝑥 

 

𝛿𝑥15 

(m) 

𝛿𝑥17 

(m) 

𝛿𝑥17 − 𝛿𝑥15

𝛿𝑥13

𝑥100% 

0.05 0.256 0.265 3.676 

0.06 0.307 0.321 4.505 

0.07 0.358 0.377 5.373 

0.08 0.409 0.435 6.28 

0.09 0.46 0.494 7.232 

0.1 0.512 0.554 8.232 

0.11 0.563 0.615 9.285 

0.12 0.614 0.678 10.395 

0.13 0.665 0.742 11.571 

0.14 0.716 0.808 12.817 

0.15 0.767 0.876 14.144 

Note : 𝛿𝑥15: calculated using equation (15) 

𝛿𝑥17: calculated using equation (17) 

 

3.4.  Model Results  

For example, consider waves with a wave amplitude 𝐴0 =

1.5 𝑚 or 𝐻0 = 3.0 𝑚, a deep water wave constant 𝑘0 =

0.391 m-1, 𝐿0 = 16.072 m, 𝑇 = 9.496 sec., 𝜎 = 0.662 sec-

1, 𝐺0= 0.000579 m.m/sec. For this wave, the deep water 

depth is ℎ0= 23.358 m. Diffraction analysis is performed at 

the breakwater entrance with an entrance width of 40.0 m, 

approximately 40.0 m≈2.5 L, and a lee side domain of 150 

m × 150 m. The water depth is 25 m, which exceeds ℎ0, 

classifying the entrance and lee side as deep water; 
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therefore, no wave transformation analysis from deep water 

to the entrance is necessary. 

Calculations are conducted using a grid size of 𝛿𝑥 = 𝛿𝑦 =

0.876 m, obtained based on an accuracy level 𝜀𝑥 = 0.15. 

The results of the diffraction analysis are presented in Fig. 

(6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6: Wave height 𝐻 contour 

 

In the model results shown in Fig. (6), a very rapid decrease 

in wave height along the x-axis is observed, starting from 

an initial wave height 𝐻 = 3.0 m at the entrance, the wave 

height reduces to 1.0 m at a distance of 30 m. This indicates 

that the energy transfer in the lateral direction—that is, 

perpendicular to the wave propagation direction—is 

excessively large. This behavior contrasts significantly with 

findings from Penney & Price (1952), Wiegel (1962), and 

the U.S. Army Coastal Engineering Research Center 

(1977), where wave height evolution in the wave direction 

is more gradual. 

To align the diffraction results with previous research, 

equation (4) is modified as follows:       

Ƌ2𝐺

Ƌ𝑥2
+ 𝛾

Ƌ2𝐺

Ƌ𝑦2
0                                                    … (18) 

Where 𝛾 is a coefficient smaller than 1.0. This coefficient, 

termed the lateral energy transfer coefficient, quantifies 

energy transfer in the direction perpendicular to the wave 

propagation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7: Wave height 𝐻 contour  using 𝛾 = 0.25 

 

Therefore, equation  (9) becomes 

2 (1 + 𝛾
𝛿𝑥2

𝛿𝑦2
) 𝐺𝑖,𝑗 = 

𝐺𝑖+1,𝑗 + 𝐺𝑖−1,𝑗 + 𝛾
𝛿𝑥2

𝛿𝑦2
(𝐺𝑖,𝑗+1 + 𝐺𝑖,𝑗−1) … (19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8: Wave height 𝐻 contour, using 𝛾 = 0.125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9: Wave height 𝐻 contour, using 𝛾 = 0.02 
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Fig.10: Wave height 𝐻 contour, 3-D, using 𝛾 = 0.02 

 

Fig. (7) shows the model results for 𝛾 = 0.25, Fig. (8) uses 

𝛾 = 0.125, and Fig. (9) uses 𝛾 = 0.02. It is observed that 

decreasing 𝛾 slows the evolution of wave height in the wave 

direction, indicating a reduction in lateral energy transfer. 

The calculations using 𝛾 = 0.02 produce results most 

consistent with previous research findings. The small value 

of 𝛾 thus reflects that lateral energy transfer is minimal. 

  

IV. WAVES FORMING AN ANGLE 

In the application of equation (4), the horizontal-𝑥 axis must 

always be aligned with the incoming wave direction. For 

waves that approach at an angle relative to the breakwater 

axis, represented by the (𝜉, 𝜂) coordinate system, the 

horizontal-𝑥 axis will form an angle with the breakwater's 

horizontal -𝜉 axis, as shown in Fig. (11). Under these 

conditions, the grid points generated in the (𝑥, 𝑦) coordinate 

system become non-uniform and irregular. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11: Grid point arrangement for waves forming an 

angle to the breakwater axis.. 

 

In such cases, advanced grid generation methods and  

numerical techniques  that fall outside the scope of the 

present research are required. 

 

V. CONCLUSION 

Overall, the model developed in this research is capable of 

producing results that align well with previous research 

findings, indicating that the model can be considered 

reliable for wave diffraction analysis at breakwater gaps. 

However, this alignment has been achieved through the 

adjustment of the lateral energy transfer coefficient. Thus, 

obtaining reliable values for this coefficient requires further 

investigation, including laboratory-based physical model 

studies. 

While the governing equation used is relatively simple, 

involving only a single variable, this simplicity results in an 

overestimation of lateral energy transfer. If the governing 

equation were to include the wave number, or the wave 

number along with the wave direction as variables, it is 

likely that a more accurate model of lateral energy transfer 

could be obtained—one that no longer requires an energy 

transfer coefficient. Consequently, it can be concluded that 

further research is still needed on the governing equation of 

the diffraction model. 
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