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Abstract— The relationship between wave amplitude and 

other wave constants is derived through the integration of the 

Kinematic Free Surface Boundary Condition (KFSBC) over 

time, yielding the wave amplitude function. This function 

presents the characteristics of wave breaking to determine the 

breaker length index—the ratio of breaking wave height to 

breaking wave length. Previous research achieved integration 

at a zero-order accuracy level, assuming small wave  

amplitude and long wave, resulting in a notably large critical 

breaker length index and wave steepness. In this research, 

KFSBC integration was advanced to second and third-order 

accuracies, yielding a wave amplitude function that 

significantly reduces the critical breaker length index and 

wave steepness compared to zero-order integration. 

Subsequently, utilizing the third-order wave amplitude 

function, a comprehensive wave transformation model 

incorporating shoaling, breaking, refraction, and diffraction 

was developed, demonstrating robust model performance. 

 
I. INTRODUCTION 

This research aimed to improve the accuracy of critical 

wave steepness and breaking wave steepness estimation. 

The breaking wave steepness equation is derived from the 

wave amplitude function obtained through the integration 

of KFSBC over time (Hutahaean, 2024). Critical wave 

steepness is determined by identifying the maximum wave 

amplitude in the dispersion equation, where the dispersion 

equation results from applying the wave amplitude function 

to the Euler conservation momentum equation. Therefore, 

both critical wave steepness and breaking wave steepness 

are derived from the wave amplitude function. 

Hutahaean (2024) conducted integration with zeroth-order 

accuracy, yielding a wave amplitude function that produced 

significant critical and breaking wave steepness. This 

research extended the integration to second and third-order 

accuracy levels, examining resulting critical wave steepness 

and breaking wave steepness. 

Additionally, Hutahaean (2024) developed a water wave 

transformation model based on the wave amplitude 

function. This research further refined the model with a new 

wave amplitude function, investigating breaking parameters 

such as breaking wave height and depth. The findings 

demonstrate that higher integration accuracy improves the 

wave amplitude function's effectiveness in predicting these 

parameters, validating the chosen integration method's 

efficacy. 
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II. COMPLETE SOLUTION OF THE 

LAPLACE EQUATION 

The complete solution of the weighted Laplace Equation 

using the separation variable method, Hutahaean (2024) in 

deep water where the bottom slope has no effect, is  

ɸ(𝑥, 𝑧, 𝑡) = 

𝐺 (cos 𝑘𝑥𝑥 + sin 𝑘𝑥𝑥) cosh 𝑘𝑧(ℎ + 𝑧) sin 𝜎𝑡    …..(1) 

ɸ(𝑥, 𝑧, 𝑡) : velocity potential 

𝐺  : wave constant 

𝑘𝑥 : wave number on the horizontal-x axis 

𝑘𝑥 =
𝑘

√𝛾𝑥

 

𝑘𝑧 : wave number on the vertical-𝑧 

𝑘𝑧 =
𝑘

√𝛾𝑧

 

𝑘 is the general wave number  

𝛾𝑥 and 𝛾𝑧 is weighting coefficient in weighted Taylor series, 

see section (3). 

𝜎 =
2𝜋

𝑇
 is angular frequency, where 𝑇 is wave period. 

ℎ : water depth  

Equation (1) is carried out at the characteristic point where 

cos 𝑘𝑥𝑥 = sin 𝑘𝑥𝑥, 

ɸ(𝑥, 𝑧, 𝑡) = 2 𝐺 cos 𝑘𝑥𝑥 cosh 𝑘𝑧(ℎ + 𝑧) sin 𝜎𝑡  .(2) 

 

III. WEIGHTED KINEMATIC FREE SURFACE 

BOUNDARY CONDITION 

a. Weighted Taylor series 

The Weighted Taylor series refers to a modified Taylor 

series truncated to first-order terms, where each first-order 

term incorporates a specific weighting coefficient in place 

of higher-order terms (Hutahaean, 2023). 

Weighted Taylor series for function 𝑓 = 𝑓(𝑥, 𝑡), 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛾𝑡,2𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛾𝑥𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

                                                                        ……(3) 

Weighted Taylor series for function 𝑓 = 𝑓(𝑥, 𝑧, 𝑡), 

𝑓(𝑥 + 𝛿𝑥, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡)

= 𝑓(𝑥, 𝑧, 𝑡) + 𝛾𝑡,3𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 

                                   𝛾𝑥𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+  𝛾𝑧𝛿𝑧

Ƌ𝑓

Ƌ𝑧
   ……(4) 

𝛾𝑡,3, 𝛾𝑡,2, 𝛾𝑥  and 𝛾𝑧 are weighting coefficients. The basic 

values of the weighting coefficient are, 𝛾𝑡,3 = 3.0 , 𝛾𝑡,2 =

2.0 , 𝛾𝑥 = 1.0 and  𝛾𝑧 = 1. The corrected weighting 

coefficient values as a function of the optimization 

coefficient 𝜀 are presented in Table (1) as follows. 

 

Table (1). Corrected weighting coefficients values. 

𝜀 𝛾𝑡,2 𝛾𝑡,3 𝛾𝑥 𝛾𝑧 

0.010 1.9998 3.00465 0.99879 1.01093 

0.011 1.99975 3.00563 0.99854 1.01325 

0.012 1.99971 3.00671 0.99826 1.0158 

0.013 1.99966 3.00788 0.99795 1.01858 

0.014 1.99960 3.00915 0.99763 1.02159 

0.015 1.99954 3.01052 0.99727 1.02484 

0.016 1.99948 3.01198 0.9969 1.02832 

0.017 1.99941 3.01355 0.99649 1.03205 

0.018 1.99934 3.01521 0.99607 1.03601 

0.019 1.99926 3.01697 0.99561 1.04022 

0.020 1.99918 3.01883 0.99514 1.04468 

 

b. Weighted Kinematic Free Surface Boundary 

Condition (KFSBC). 

For the water surface elevation equation 𝜂 = 𝜂(𝑥, 𝑡),  the 

weighting Taylor series is, 

𝜂(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝜂(𝑥, 𝑡) + 𝛾𝑡,2𝛿𝑡
Ƌ𝜂

Ƌ𝑡
+ 𝛾𝑥𝛿𝑥

Ƌ𝜂

Ƌ𝑥
 

The first term on the right side is moved to the left, and the 

Equation is divided by 𝛿𝑡, 

 

𝜂(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝜂(𝑥, 𝑡)

𝛿𝑡
= 𝛾𝑡,2

Ƌ𝜂

Ƌ𝑡
+ 𝛾𝑥

𝛿𝑥

𝛿𝑡

Ƌ𝜂

Ƌ𝑥
 

As 𝛿𝑡 approaches zero, the left side of the equation 

represents the speed of change in water surface elevation, 

which corresponds to the total vertical velocity of surface 

water particles. 

𝑤𝜂 = 𝛾𝑡,2
Ƌ𝜂

Ƌ𝑡
+ 𝛾𝑥𝑢𝜂

Ƌ𝜂

Ƌ𝑥
                                       ….(5) 

This equation is denoted as KFSBC. Here, 𝑤𝜂 represents the 

vertical velocity of surface water particles, and 𝑢𝜂 denotes 

the horizontal velocity at the water surface. 

Equation (5) can thus be expressed as the equation 

describing changes in water level elevation, namely, 

 

𝛾𝑡,2
Ƌ𝜂

Ƌ𝑡
= 𝑤𝜂 − 𝛾𝑥𝑢𝜂

Ƌ𝜂

Ƌ𝑥
                                        ….(6) 

 

IV. KFSBC INTEGRATION WITH 0TH ORDER 

ACCURACY. 

Hutahaean (2024) utilized zeroth-order integration to 

establish the relationship between wave amplitude and 

wave constants 𝐺, such as wave number 𝑘 and angular 

frequenc 𝜎, termed as the wave amplitude function. The 

subsequent section will reiterate the steps involved in the 

http://www.ijaers.com/
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zeroth-order integration process to outline the formulation 

of the equation for the wave amplitude function. 

 

1.1. The formulation of wave amplitude function. 

Using equation (2), the vertical water particle velocity is:  

𝑤 = −
Ƌɸ

Ƌ𝑧
= −2 𝐺𝑘𝑧  cos 𝑘𝑥𝑥 sinh 𝑘𝑧(ℎ + 𝑧) sin 𝜎𝑡 

Surface vertical water particle velocity is 

𝑤𝜂 = −2 𝐺𝑘𝑧  cos 𝑘𝑥𝑥 sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡 

                                                                      …….(7) 

 

Meanwhile, the horizontal water particle velocity is 

𝑢 = −
Ƌɸ

Ƌ𝑥
= 2𝐺𝑘𝑥  sin 𝑘𝑥𝑥 cosh 𝑘𝑧(ℎ + 𝑧) sin 𝜎𝑡 

Surface horizontal water particle velocity is 

𝑢𝜂 = 2𝐺𝑘𝑥  sin 𝑘𝑥𝑥 cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡 

                                                                      ……(8) 

The substitution of (7) and (8) number (6), 

 

𝛾𝑡,2

Ƌ𝜂

Ƌ𝑡
= 

−2𝐺𝑘𝑧 cos 𝑘𝑥 sinh 𝑘𝑧 (ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡 

−2𝛾𝑥𝐺𝑘𝑥 sin 𝑘𝑥 cosh 𝑘𝑧 (ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡
Ƌ𝜂

Ƌ𝑥
 

 

To derive the equation for water surface elevation, integrate 

this equation over time 𝑡,  

𝛾𝑡,2𝜂(𝑥, 𝑡) = 

−2𝐺𝑘𝑧  cos 𝑘𝑥𝑥 ∫ sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  𝑑𝑡 

−2𝛾𝑥𝐺𝑘𝑥 sin 𝑘𝑥𝑥 ∫ cosh 𝑘𝑧(ℎ +

𝜂(𝑥, 𝑡)) sin 𝜎𝑡 
Ƌ𝜂

Ƌ𝑥
 𝑑𝑡                                    …(9) 

 

The water surface elevation equation obtained depends on 

the integration solution's accuracy level. Theoretical 

accuracy ranges from order 0 to order n, determined by the 

presence of 
Ƌ𝑛𝜂

Ƌ𝑡𝑛  in the integration solution. 

 

Order 0 integration assumes 
Ƌ0𝜂

Ƌ𝑡0  in the results, while order 

1 implies 
Ƌ1𝜂

Ƌ𝑡1,  order 2 involves 
Ƌ2𝜂

Ƌ𝑡2, etc. This research was 

limited to order 3 accuracy. 

In zero-order integration, the assumption is made that in 

deep water and with small wave amplitudes |sinh 𝑘𝑧ℎ (1 +

𝜂(𝑥,𝑡)

ℎ
)|  and |cosh 𝑘𝑧ℎ (1 +

𝜂(𝑥,𝑡)

ℎ
) 

Ƌ𝜂

Ƌ𝑥
| fluctuates very little 

with time, allowing it to be treated as constant and excluded 

from integration. 

 

𝛾𝑡,2𝜂(𝑥, 𝑡) = 

−2𝐺𝑘𝑧 sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝑘𝑥𝑥  ∫ sin 𝜎𝑡  𝑑𝑡 

−2𝛾𝑥𝐺𝑘𝑥 cosh 𝑘𝑧(ℎ

+ 𝜂(𝑥, 𝑡)) sin 𝑘𝑥𝑥  
Ƌ𝜂

Ƌ𝑥
∫ sin 𝜎𝑡  𝑑𝑡 

This integration can be completed by integrating the 

sinusoidal function alone. After integrating, the 

characteristic point property is worked out, namely 

cos 𝑘𝑥𝑥 = sin 𝑘𝑥𝑥  and substituted with  𝑘𝑥 =
𝑘

√𝛾𝑥
  and 

𝑘𝑧 =
𝑘

√𝛾𝑧
, 

𝛾𝑡,2𝜂(𝑥, 𝑡) =
2𝐺𝑘

𝜎
  cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) 

(
tanh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡))

√𝛾𝑧

+  √𝛾𝑥

Ƌ𝜂

Ƌ𝑥
) cos 𝑘𝑥𝑥  cos 𝜎𝑡  

 

In the integrated results, the absence of the 
Ƌ𝜂

Ƌ𝑡
 term indicates 

a zero-order integration. 

In deep water, where tanh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) ≈ 1, 𝑘𝑧(ℎ +

𝜂(𝑥, 𝑡)) = 𝜃𝜋.   𝜃 is referred to as deep water coefficient 

with 𝜃 > 1,  for instance 𝜃 = 1.75. 

 

𝜂(𝑥, 𝑡) =
2𝐺𝑘

𝜎𝛾𝑡,2

  cosh 𝜃𝜋 

                (
tanh 𝜃𝜋

√𝛾𝑧

 √𝛾𝑥

Ƌ𝜂

Ƌ𝑥
) cos 𝑘𝑥𝑥  cos 𝜎𝑡 

 

As a periodic function, hence 

𝐴 =
2𝐺𝑘

𝜎𝛾𝑡,2

  cosh 𝜃𝜋 (
tanh 𝜃𝜋

√𝛾𝑧

+ √𝛾𝑥

Ƌ𝜂

Ƌ𝑥
) 

𝐴  is wave amplitude. 

 

Water surface elevation equation is 

𝜂(𝑥, 𝑡) = 𝐴 cos 𝑘𝑥𝑥  cos 𝜎𝑡                                …(10) 

At the characteristic point of space and time, 

Ƌ𝜂

Ƌ𝑥
= −

𝑘𝑥𝐴

2
 

The wave amplitude function is 

𝐴 =
2𝐺𝑘

𝜎𝛾𝑡,2
  cosh 𝜃𝜋 (

tanh 𝜃𝜋

√𝛾𝑧
− 

𝑘𝐴

2
)                      …(11)  

This equation is the wave amplitude function equation 

resulting from zero order integration. 

 

 

1.2. 0th order breaking characteristics. 

In (11), breaking occurs when 

tanh 𝜃𝜋

√𝛾𝑧

− 
𝑘𝐴

2
= 0 

𝐻𝑏

𝐿𝑏
=

2 tanh 𝜃𝜋

𝜋√𝛾𝑧
                                                   ……(12) 
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Equation (12) applies universally across all wave periods, 

accommodating the specific wave height relevant to each 

period. 

  

1.3. 0th order dispersion equation  

The dispersion equation is formulated based on surface-

weighted Euler momentum conservation, excluding the 

convective acceleration term. 

𝛾𝑡,3 
Ƌ𝑢𝜂

Ƌ𝑡
= −𝑔

Ƌ𝜂

Ƌ𝑥
                                                  

With 𝑢𝜂 from (8) and 𝜂 and (10), the following is obtained  

𝛾𝑡,3 
Ƌ𝑢𝜂

Ƌ𝑡
= 2𝛾𝑡,3𝐺𝑘𝑥𝜎 sin 𝑘𝑥𝑥 cosh 𝑘𝑧(ℎ

+ 𝜂(𝑥, 𝑡)) cos 𝜎𝑡 

−𝑔
Ƌ𝜂

Ƌ𝑥
= 𝑔𝑘𝑥𝐴 sin 𝑘𝑥𝑥  cos 𝜎𝑡 

 

Substitute these two equations into (13),  

2𝛾𝑡,3𝐺𝜎 cosh 𝜃𝜋 = 𝑔𝐴 

Wave amplitude on the right side is substituted with (11), 

2𝛾𝑡,3𝐺𝜎 cosh 𝜃𝜋 =
2𝑔𝐺𝑘

𝜎𝛾𝑡,2

  cosh 𝜃𝜋 (
tanh 𝜃𝜋

√𝛾𝑧

−  
𝑘𝐴

2
) 

𝑔𝐴

2
 𝑘2 −

𝑔 tanh 𝜃𝜋

√𝛾𝑧
𝑘 + 𝛾𝑡,2𝛾𝑡,3𝜎2 = 0                ……(13) 

 

This equation is the dispersion equation resulting from zero 

order integration. 

 

The steps in formulating the wave amplitude function are: 

a. Completing the integration of KFSBC 

b. The integration results are collected to form an 

Equation:𝜂(𝑥, 𝑡) =  (… … ) cos 𝑘𝑥𝑥 cos 𝜎𝑡 

c. Defining wave amplitude function  𝐴 =(……), obtaining 

𝜂(𝑥, 𝑡) =  𝐴 cos 𝑘𝑥𝑥 cos 𝜎𝑡 

 

From this Equation, we obtain the Equation of 
Ƌ𝜂

Ƌ𝑥
, which is 

then substituted into the wave amplitude function equation, 

to obtain the final Equation of the wave amplitude function. 

 

 

V.  KFSBC INTEGRATION WITH 2ND ORDER 

ACCURACY. 

The integration will be completed until there is an element 

Ƌ2𝜂

Ƌ𝑡2. Integration is carried out using the integral inversion 

method (Hutahaean (2010).  

 

a. ∫ sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  𝑑𝑡 

Is defined as, 

𝑓(𝑡) = sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡 

𝑑𝑓

𝑑𝑡
= −𝜎 sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡 + 

              𝑘𝑧 cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡  
Ƌ𝜂

Ƌ𝑡
 

This differential equation is integrated over time 𝑡, 

∫ 𝑑𝑓 = −𝜎 ∫ sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  𝑑𝑡 

           +𝑘𝑧 ∫  cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑡
𝑑𝑡  

Integration of the left side produces 𝑓(𝑡), substitution 

𝑓(𝑡)and the rearranged Equation is obtained 

∫ sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  𝑑𝑡 = 

       −
1

𝜎
sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡 

       + 
𝑘𝑧

𝜎
 ∫  cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡

Ƌ𝜂

Ƌ𝑡
𝑑𝑡 

                                                         ………….(14) 

In second-order integration, the fluctuations 

| cosh 𝑘𝑧ℎ (1 +
𝜂(𝑥,𝑡)

ℎ
)

Ƌ𝜂

Ƌ𝑡
| with respect to time are 

significant enough that the integration of the two terms on 

the right side necessitates the use of the integral inversion 

method. 

∫  cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑡
𝑑𝑡 = ? 

Is defined as, 

𝑓(𝑡) = cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡
Ƌ𝜂

Ƌ𝑡
 

𝑑𝑓

𝑑𝑡
= 𝑘𝑧 sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

2

 

          +𝜎 cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑡
 

          + cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡
Ƌ2𝜂

Ƌ𝑡2
 

 

Is integrated into, 

∫ 𝑑𝑓 = 

∫ 𝑘𝑧 sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  (
Ƌ𝜂

Ƌ𝑡
)

2

𝑑𝑡 

        +𝜎 ∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑡
 𝑑𝑡 

         + ∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡
Ƌ2𝜂

Ƌ𝑡2
 𝑑𝑡 

 

The left side is substituted with 𝑓(𝑡) and rearranged  
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∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑡
 𝑑𝑡 = 

                     
1

𝜎
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡

Ƌ𝜂

Ƌ𝑡
  

  −
𝑘𝑧

𝜎
∫ sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

2

𝑑𝑡 

       − 
1

𝜎
∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡

Ƌ2𝜂

Ƌ𝑡2
 𝑑𝑡 

In this 2nd order integration, the assumption is made that 

fluctuations over time 𝑡 from |sinh 𝑘𝑧ℎ (1 +

𝜂(𝑥,𝑡)

ℎ
) (

Ƌ𝜂

Ƌ𝑡
)

2

|  𝑎𝑛𝑑 |cosh 𝑘𝑧ℎ (1 +
𝜂(𝑥,𝑡)

ℎ
) 

Ƌ2𝜂

Ƌ𝑡2|   is very 

small and can be considered constant that it can be excluded 

from the integral. 

∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑡
 𝑑𝑡 = 

                
1

𝜎
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡

Ƌ𝜂

Ƌ𝑡
  

    −
𝑘𝑧

𝜎
sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) (

Ƌ𝜂

Ƌ𝑡
)

2

∫ sin 𝜎𝑡  𝑑𝑡 

        − 
1

𝜎
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡))

Ƌ2𝜂

Ƌ𝑡2
∫ sin 𝜎𝑡  𝑑𝑡 

 

The final integration is completed by simply integrating the 

sinusoidal function, obtaining the followings. 

∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑡
 𝑑𝑡 = 

        
1

𝜎
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡

Ƌ𝜂

Ƌ𝑡
 

       +
𝑘𝑧

𝜎2
sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

2

 

      +
1

𝜎2
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡

Ƌ2𝜂

Ƌ𝑡2
 

Or, 

𝑘𝑧

𝜎
∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡

Ƌ𝜂

Ƌ𝑡
 𝑑𝑡 = 

                          
𝑘𝑧

𝜎2
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡

Ƌ𝜂

Ƌ𝑡
 

               +
𝑘𝑧

2

𝜎3
sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

2

 

                 +
𝑘𝑧

𝜎3
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡

Ƌ2𝜂

Ƌ𝑡2
 

 

Since 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) = 𝜃𝜋 and calculating the integration 

outcomes at the specific time point, cos 𝜎𝑡 = sin 𝜎𝑡 

𝑘𝑧

𝜎
∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡

Ƌ𝜂

Ƌ𝑡
 𝑑𝑡 = 

1

𝜎
cosh 𝜃𝜋 (

𝑘𝑧

𝜎

Ƌ𝜂

Ƌ𝑡
+

𝑘𝑧
2

𝜎2
tanh 𝜃𝜋 (

Ƌ𝜂

Ƌ𝑡
)

2

+
𝑘𝑧

𝜎2

Ƌ2𝜂

Ƌ𝑡2
) cos 𝜎𝑡 

 

The results of this integration are substituted into (14), 

∫ sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  𝑑𝑡 = −
cosh 𝜃𝜋

𝜎
  

( tanh 𝜃𝜋 − (
𝑘𝑧

𝜎

Ƌ𝜂

Ƌ𝑡
+

𝑘𝑧
2

𝜎2
tanh 𝜃𝜋 (

Ƌ𝜂

Ƌ𝑡
)

2

+
𝑘𝑧

𝜎2

Ƌ2𝜂

Ƌ𝑡2
)) 

                                         cos 𝜎𝑡 … … . . (15)                        

 

Based on the integration results, there are terms 
Ƌ2𝜂

Ƌ𝑡2 that is 

equivalent to (
Ƌ𝜂

Ƌ𝑡
)

2

, classifying this integration as second-

order accurate. 

 

b. ∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  
Ƌ𝜂

Ƌ𝑥
 𝑑𝑡 

Is defined as, 

𝑓(𝑡) = cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑥
 

𝑑𝑓

𝑑𝑡
= −𝜎 cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡

Ƌ𝜂

Ƌ𝑥
 

             +𝑘𝑧 sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑡

Ƌ𝜂

Ƌ𝑥
 

                 + cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ2𝜂

Ƌ𝑡Ƌ𝑥
 

Multiplied by 𝑑𝑡 is integrated into, 

∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡
Ƌ𝜂

Ƌ𝑥
 𝑑𝑡 = 

          −
1

𝜎
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡

Ƌ𝜂

Ƌ𝑥
 

          +
𝑘𝑧

𝜎
∫ sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡

Ƌ𝜂

Ƌ𝑡

Ƌ𝜂

Ƌ𝑥
 𝑑𝑡 

          +
1

𝜎
∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡

Ƌ2𝜂

Ƌ𝑡Ƌ𝑥
 𝑑𝑡 

In this second order integration, the assumption is made that 

the fluctuation |sinh 𝑘𝑧ℎ (1 +
𝜂(𝑥,𝑡)

ℎ
)

Ƌ𝜂

Ƌ𝑡

Ƌ𝜂

Ƌ𝑥
| with respect to 

time t is quite small that it can be considered constant and 

can be excluded from the integral. 
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Likewise, the fluctuation ||cosh 𝑘𝑧ℎ (1 +
𝜂(𝑥,𝑡)

ℎ
)

Ƌ2𝜂

Ƌ𝑡Ƌ𝑥
|with 

respect to time 𝑡 is considered too small that it can be 

excluded from the integral. 

∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡
Ƌ𝜂

Ƌ𝑥
 𝑑𝑡 = 

                        −
1

𝜎
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡

Ƌ𝜂

Ƌ𝑥
 

         +
𝑘𝑧

𝜎
sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡))

Ƌ𝜂

Ƌ𝑡

Ƌ𝜂

Ƌ𝑥
∫ cos 𝜎𝑡  𝑑𝑡 

             +
1

𝜎
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡))

Ƌ2𝜂

Ƌ𝑡Ƌ𝑥
∫ cos 𝜎𝑡  𝑑𝑡 

This integration equation can be solved by integrating 

∫ cos 𝜎𝑡  𝑑𝑡 directly. Once integrated and substituting 

𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) = 𝜃𝜋, the equation is evaluated at the 

characteristic time point where cos 𝜎𝑡 = sin 𝜎𝑡, yielding: 

   ∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡
Ƌ𝜂

Ƌ𝑥
 𝑑𝑡 =

−
1

𝜎
cosh 𝜃𝜋 

          (
Ƌ𝜂

Ƌ𝑥
−

𝑘𝑧

𝜎
tanh 𝜃𝜋

Ƌ𝜂

Ƌ𝑡

Ƌ𝜂

Ƌ𝑥

−
1

𝜎

Ƌ2𝜂

Ƌ𝑡Ƌ𝑥
) cos 𝜎𝑡 … (16) 

 

Regarding the presence of 
Ƌ𝜂

Ƌ𝑡

Ƌ𝜂

Ƌ𝑥
 and 

Ƌ2𝜂

Ƌ𝑡Ƌ𝑥
, then the result of 

the integration is called the second order level of accuracy. 

 

Equation-Equation (15) and (16) are substituted to  (9),  

𝜂(𝑥, 𝑡) =
𝐺𝑘𝑧

𝜎𝛾𝑡,2

cosh 𝜃𝜋  

( tanh 𝜃𝜋

+ (𝑘𝑧𝐴 −
𝑘𝑧

2𝐴2

4
tanh 𝜃𝜋)) cos 𝜎𝑡 cos 𝑘𝑥𝑥 

+
𝛾𝑥𝐺𝑘𝑥

𝜎𝛾𝑡,2

cosh 𝜃𝜋 (
Ƌ𝜂

Ƌ𝑥
−

𝑘𝑧

𝜎
tanh 𝜃𝜋

Ƌ𝜂

Ƌ𝑡

Ƌ𝜂

Ƌ𝑥

−
1

𝜎

Ƌ2𝜂

Ƌ𝑡Ƌ𝑥
) 

                                                    cos 𝜎𝑡 cos 𝑘𝑥𝑥 

 

As a periodic function, therefore  

𝐴 =
𝐺𝑘𝑧

𝜎𝛾𝑡,2

cosh 𝜃𝜋 ( tanh 𝜃𝜋

+ (𝑘𝑧𝐴 −
𝑘𝑧

2𝐴2

4
tanh 𝜃𝜋)) 

+
𝛾𝑥𝐺𝑘𝑥

𝜎𝛾𝑡,2

cosh 𝜃𝜋 (
Ƌ𝜂

Ƌ𝑥
−

𝑘𝑧

𝜎
tanh 𝜃𝜋

Ƌ𝜂

Ƌ𝑡

Ƌ𝜂

Ƌ𝑥

−
1

𝜎

Ƌ2𝜂

Ƌ𝑡Ƌ𝑥
) 

obtaining 

𝜂(𝑥, 𝑡) = 𝐴 cos 𝜎𝑡 cos 𝑘𝑥𝑥  

Within the characteristic point of 

Ƌ𝜂

Ƌ𝑥
= −

𝑘𝑥𝐴

2
 

Ƌ𝜂

Ƌ𝑡
= −

𝜎𝐴

2
 

Ƌ2𝜂

Ƌ𝑡Ƌ𝑥
=

𝜎𝑘𝑥𝐴

2
 

Is the differential substitution of 𝜂(𝑥, 𝑡) and  𝑘𝑥 =
𝑘

√𝛾𝑥
 and 𝑘𝑧 =

𝑘

√𝛾𝑧
 

𝐴 =
2𝐺𝑘

𝜎𝛾𝑡,2

cosh 𝜃𝜋 

(
 tanh 𝜃𝜋

√𝛾𝑧

+ (
1

𝛾𝑧

− 1) 𝑘𝐴

− (
1

𝛾𝑧√𝛾𝑧 

+
√𝛾𝑥

√𝛾𝑧

)
tanh 𝜃𝜋

4
𝑘2𝐴2) 

 

                                                                  …….(17) 

This equation is the wave amplitude function resulting 

from integration with 2nd order accuracy. 

5.2. Breaking 2nd order characteristics 

 

Breaking occurs when 

 tanh 𝜃𝜋

√𝛾𝑧

+ (
1

𝛾𝑧

− 1) 𝑘𝐴 − 

                            (
1

𝛾𝑧√𝛾𝑧 
+

√𝛾𝑥

√𝛾𝑧

)
tanh 𝜃𝜋

4
𝑘2𝐴2 = 0 

Is substituted to 𝑘 =
2𝜋

𝐿
 and sinusoidal wave 𝐴 =

𝐻

2
, 

 tanh 𝜃𝜋

√𝛾𝑧

+ (
1

𝛾𝑧

− 1) 𝜋 (
𝐻

𝐿
)  − 

    (
1

𝛾𝑧√𝛾𝑧 
+

√𝛾𝑥

√𝛾𝑧

)
tanh 𝜃𝜋

4
 𝜋2 (

𝐻

𝐿
)

2

= 0                               … (18) 

 

Using equation (18), 
𝐻

𝐿
known as the breaker length index 

𝐻𝑏

𝐿𝑏
 

can be calculated. This equation does not include 

parameters for wave period or wave amplitude. Therefore, 
𝐻𝑏

𝐿𝑏
 obtained is valid for all wave periods, provided the 

appropriate wave amplitude is considered. 
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5.3. 2nd order Dispersion Equation. 

In the same way as the formulation of the dispersion 

equation in (4.3) where in this case the wave amplitude 

function (17) is used, the dispersion equation obtained is 

(
1

𝛾𝑧√𝛾𝑧

+
√𝛾𝑥

√𝛾𝑧

)
tanh 𝜃𝜋

4
𝑔𝐴2𝑘3 − (

1

𝛾𝑧

− 1) 𝑔𝐴𝑘2 

                −
 tanh 𝜃𝜋

√𝛾𝑧

 𝑔𝑘 + 𝛾𝑡,2𝛾𝑡,3𝜎2 = 0  … (19) 

 

The equation is a third-degree polynomial that can be solved 

using the Newton-Raphson iteration method. Initially, 

terms containing 𝑘3 are disregarded to simplify the equation 

to a second-degree polynomial. Once 𝑘 is found from this 

simplified equation, it is used in the complete set of 

equations to calculate 𝑘 accurately. 

 

VI. KFSBC INTEGRATION WITH 3RD ORDER 

ACCURACY 

In this section the integration process is not discussed in its 

entirety, just an example. In second order integration there 

are integration results, 

∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑡
 𝑑𝑡 = 

                           
1

𝜎
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡

Ƌ𝜂

Ƌ𝑡
  

   −
𝑘𝑧

𝜎
∫ sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

2

𝑑𝑡 

        − 
1

𝜎
∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡

Ƌ2𝜂

Ƌ𝑡2
 𝑑𝑡 

 

In second-order integration, the two integrations on the right 

side are solved by integrating only the sinusoidal elements. 

However, in third-order integration, the two right-hand side 

integrations are solved using the integral inversion method. 

For example, 

 

𝑘𝑧

𝜎
∫ sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

2

𝑑𝑡 

𝑓(𝑡) = sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡  (
Ƌ𝜂

Ƌ𝑡
)

2

 

 

𝑑𝑓

𝑑𝑡
= 𝑘𝑧 cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

3

 

             − 𝜎  sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  (
Ƌ𝜂

Ƌ𝑡
)

2

 

              +2 sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑡
 
Ƌ2𝜂

Ƌ𝑡2
 

This equation is multiplied with 𝑑𝑡 and is integrated into, 

 

∫ 𝑑𝑓 = 

𝑘𝑧 ∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡  (
Ƌ𝜂

Ƌ𝑡
)

3

𝑑𝑡 

      −𝜎 ∫   sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  (
Ƌ𝜂

Ƌ𝑡
)

2

𝑑𝑡 

     +2 ∫ sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡
Ƌ𝜂

Ƌ𝑡
 
Ƌ2𝜂

Ƌ𝑡2
 𝑑𝑡 

 

Substitute 𝑓(𝑡) on the left side and is moved to the right, 

while the second term on the right side is moved to the left, 

∫  sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  (
Ƌ𝜂

Ƌ𝑡
)

2

𝑑𝑡 = 

    −
1

𝜎
 sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

2

 

    +
𝑘𝑧

𝜎
∫ cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

3

𝑑𝑡 

    + 
2

𝜎
∫ sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡

Ƌ𝜂

Ƌ𝑡
 
Ƌ2𝜂

Ƌ𝑡2
 𝑑𝑡 

The assumption is that fluctuations with time from: 

|cosh 𝑘𝑧ℎ (1 +
𝜂(𝑥,𝑡)

ℎ
) (

Ƌ𝜂

Ƌ𝑡
)

3

| and  |sinh 𝑘𝑧ℎ (1 +

𝜂(𝑥,𝑡)

ℎ
)

Ƌ𝜂

Ƌ𝑡
 

Ƌ2𝜂

Ƌ𝑡2|  is very small and can be considered constant, 

that it can be excluded from integration, and what is 

integrated into, is only the sinusoidal element. Obtaining, 

𝑘𝑧

𝜎
∫  sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

2

𝑑𝑡 = 

        −
𝑘𝑧

𝜎2
 sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

2

 

        +
𝑘𝑧

2

𝜎3
cosh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) sin 𝜎𝑡  (

Ƌ𝜂

Ƌ𝑡
)

3

 

         + 
2𝑘𝑧

𝜎3
sinh 𝑘𝑧(ℎ + 𝜂(𝑥, 𝑡)) cos 𝜎𝑡

Ƌ𝜂

Ƌ𝑡
 
Ƌ2𝜂

Ƌ𝑡2
 

After all the integrations are completed then add them up 

and carry out the process as in 2nd order integration, we get, 

𝜂(𝑥, 𝑡) =
2𝐺𝑘𝑐𝑜𝑠ℎ 𝜃𝜋

𝜎𝛾𝑡,2

𝛼(𝑘, 𝐴) cos 𝑘𝑥𝑥 𝑐𝑜𝑠 𝜎𝑡 

 

𝛼(𝑘, 𝐴) =
𝑡𝑎𝑛ℎ 𝜃𝜋

√𝛾𝑧

+ (
3

2𝛾𝑧

−
3

2
) 𝑘𝐴

−
𝑘2𝐴2

2√𝛾𝑥√𝛾𝑧

𝑡𝑎𝑛ℎ 𝜃𝜋 
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                + (
1

𝛾𝑧
2

−
1

𝛾𝑧

)
𝑘3𝐴3

8
 

 

Where the wave amplitude function  is 

𝐴 =
2𝐺𝑘𝑐𝑜𝑠ℎ 𝜃𝜋

𝜎𝛾𝑡,2
𝛼(𝑘, 𝐴)                                    …..(20) 

 

Breaking occurs when, 

𝑡𝑎𝑛ℎ 𝜃𝜋

√𝛾𝑧

+ (
3

2𝛾𝑧

−
3

2
) 𝑘𝐴 −

(𝑘𝐴)2

2√𝛾𝑥√𝛾𝑧

𝑡𝑎𝑛ℎ 𝜃𝜋 

                            + (
1

𝛾𝑧
2

−
1

𝛾𝑧

)
(𝑘𝐴)3

8
= 0 … … (21) 

 

From this equation, the 𝑘𝐴 value can be calculated. It is a 

third-degree polynomial equation, which can be solved 

using the Newton-Raphson iteration method. Initially, the 

𝑘𝐴 value is estimated by disregarding the terms. After 

obtaining an approximate 𝑘𝐴 value using this simplified 

equation, it can then be refined using the complete set of 

equations. For example, 

𝑘𝐴 = 𝜆 

Considering 𝑘 =
2𝜋

𝐿
 and 𝐻 = 2𝐴, 

𝐻𝑏

𝐿𝑏

=
𝜆

𝜋
 

Dispersion equation with wave amplitude function obtained 

from 3rd order integration is, 

(
1

𝛾𝑧
2

−
1

𝛾𝑧

)
𝐴3

8
𝑘4 −

𝑡𝑎𝑛ℎ 𝜃𝜋 𝐴2

2√𝛾𝑥√𝛾𝑧

𝑘3 + (
1

2𝛾𝑧

−
3

2
) 𝐴𝑘2 

             +
𝑡𝑎𝑛ℎ 𝜃𝜋

√𝛾𝑧

 𝑘 −
𝛾𝑡,3𝛾𝑡,3 𝜎2

𝑔
= 0     … . (22) 

 

This equation is a 4th-degree polynomial, which can be 

solved using the Newton-Raphson iteration method. The 

initial iteration value is obtained by disregarding the terms 

with powers of 4 and 3. 

 

VII. WAVELENGTH, CRITICAL WAVE 

STEEPNESS AND BREAKER LENGTH INDEX 

In this section, a comparative research of wavelength, 

maximum wave height, and critical wave steepness is 

conducted. The research utilizes the dispersion equation 

with an optimization coefficient 𝜀 of 0.01 for the weighting 

coefficient. 

 

In the dispersion equation derived from zero-order 

integration using the wave amplitude function, the 

maximum wave height corresponds to the wave height at 

which the determinant value of equation (13) becomes zero. 

 

For the dispersion equation (19) obtained from second-

order integration using the wave amplitude function, using 

an excessively large wave height results in a negative wave 

number. Therefore, the maximum wave height in equation 

(19) is the largest wave height that does not produce a 

negative wave number. 

 

Similarly, in the dispersion equation (22) resulting from 

third-order integration with the wave amplitude function, 

using a wave height that is too large also yields a negative 

wave number. Thus, the maximum wave height in equation 

(22) is the highest wave height before encountering a 

negative wave number. 

There are two types of wave numbers: the horizontal wave 

number 𝑘𝑥 and vertical wave number 𝑘𝑧, where 

𝑘𝑥 =
𝑘

√𝛾𝑥
   and  𝑘𝑧 =

𝑘

√𝛾𝑧
 

Therefore, two wavelengths are, 

Horizontal wavelength : 𝐿𝑥 =
2𝜋

𝑘𝑥
=

2𝜋 

𝑘
√𝛾𝑥 = 𝐿 √𝛾𝑥 

Vertical wavelength : 𝐿𝑧 =
2𝜋

𝑘𝑧
=

2𝜋

𝑘
 √𝛾𝑧 = 𝐿 √𝛾𝑧 

Table (2) presents the maximum wave height of (13) 

 

Table (2). Maximum wave height from (13) 

𝑇 

(sec) 

𝐻𝑚𝑎𝑥 

(m) 

𝐿𝑥 

(m) 

𝐿𝑧 

(m) 

𝐻𝑚𝑎𝑥

𝐿𝑥

 

6 1.453 4.64 4.699 0.313 

7 1.977 6.401 6.481 0.309 

8 2.583 8.272 8.377 0.312 

9 3.269 10.487 10.619 0.312 

10 4.036 12.914 13.077 0.313 

11 4.883 15.708 15.906 0.311 

12 5.812 18.56 18.795 0.313 

13 6.821 21.79 22.064 0.313 

14 7.911 25.188 25.506 0.314 

15 9.081 29.056 29.422 0.313 

 

Table (3). Maximum wave height from (19) 

𝑇 

(sec) 

𝐻𝑚𝑎𝑥 

(m) 

𝐿𝑥 

(m) 

𝐿𝑧 

(m) 

𝐻𝑚𝑎𝑥

𝐿𝑥

 

6 1.565 6.169 6.246 0.253 

7 2.13 8.41 8.516 0.253 

8 2.782 10.988 11.126 0.253 

9 3.522 13.76 13.934 0.256 

10 4.348 17.027 17.241 0.255 
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11 5.261 20.618 20.878 0.255 

12 6.261 24.542 24.852 0.255 

13 7.348 28.799 29.162 0.255 

14 8.522 33.389 33.81 0.255 

15 9.783 38.31 38.793 0.255 

 

Based on the data presented in Tables 2, 3, and 4, it is 

evident that the difference between the horizontal 

wavelength 𝐿𝑥 and the vertical wavelength 𝐿𝑧is minimal. 

Table (4). Wave height maximum from (22) 

𝑇 

(sec) 

𝐻𝑚𝑎𝑥 

(m) 

𝐿𝑥 

(m) 

𝐿𝑧 

(m) 

𝐻𝑚𝑎𝑥

𝐿𝑥

 

6 1.53 6.201 6.279 0.247 

7 2.082 8.468 8.575 0.246 

8 2.72 11.023 11.162 0.247 

9 3.444 13.839 14.013 0.249 

10 4.252 17.07 17.285 0.249 

11 5.146 20.474 20.733 0.251 

12 6.124 24.437 24.745 0.251 

13 7.186 28.835 29.199 0.249 

14 8.336 33.015 33.432 0.252 

15 9.568 38.292 38.775 0.25 

 

As the integration order increases, the critical wave 

steepness decreases. Specifically, the difference between 

the critical wave steepness values derived from equations 

(19) and (22) is relatively small, typically in the third 

decimal place. This suggests that increasing the integration 

order to 4th order would yield a critical wave steepness not 

significantly different from that obtained at 3rd order. In 

general, the critical wave steepness is estimated to be 0.250. 

 

Toffoli et al. (2010) propose a critical wave steepness of 

0.170, while suggesting it could reach up to 0.20. It is noted 

that the wave steepness calculated at 3rd order accuracy 

closely approximates the criteria proposed by Toffoli et al. 

The comparison of the breaker wave steepness 
𝐻𝑏

𝐿𝑏
from 

equations (12), (18), and (21), using parameters 𝜃 = 1.75 

and 𝜀 = 0.01, progresses from the lowest to highest 

integration order. 

Dari (12), 
𝐻𝑏

𝐿𝑏
= 0.629 

Dari (18), 
𝐻𝑏

𝐿𝑏
= 0.446 

Dari (21), 
𝐻𝑏

𝐿𝑏
= 0.437 

The critical wave steepness in deep water differs from the 

wave steepness at the breaking point, 
𝐻𝑏

𝐿𝑏
, where breaking 

waves concentrate a significant amount of energy. Among 

the three 
𝐻𝑏

𝐿𝑏
   values, the smallest is obtained from equation 

(21), which corresponds to 3rd order integration. The 

difference between 
𝐻𝑏

𝐿𝑏
from equation (18) and 

𝐻𝑏

𝐿𝑏
from 

equation (21) is negligible, indicating that increasing the 

integration accuracy will not lead to substantial changes. 

 

In conclusion, the breaking wave steepness 
𝐻𝑏

𝐿𝑏
is generally 

estimated to be 0.437 

 

VIII. WAVE TRANSFORMATION MODEL 

The wave amplitude function equation, which establishes 

the relationship among various wave constants, serves as a 

foundational equation for developing wave transformation 

models (Hutahaean, 2024). By deriving a new wave 

amplitude function, different wave transformation 

phenomena can be modeled. 

 

 

 

 

 

 

 

 

  

 

 

Fig (1)Axis system for wave transformation modeling. 

 

The wave transformation model is constructed within the 

coordinate system depicted in Figure (1), where the wave 

propagates along the 𝜉 axis in the (𝑥, 𝑦) plane, forming an 

angle 𝛼 with the horizontal 𝑥. 

8.1 Shoaling-breaking model. 

Shoaling breaking equations were developed for waves 

moving on the 𝜉-axis. The wave amplitude function 

resulting from 3rd order integration, namely (20), is written 

as, 

𝐴 = 𝐺𝑘 𝜆(𝑘, 𝐴)                                               …..(23) 

𝜆(𝑘, 𝐴) =
2𝑐𝑜𝑠ℎ 𝜃𝜋

𝜎𝛾𝑡,2

(
𝑡𝑎𝑛ℎ 𝜃𝜋

√𝛾𝑧

+ (
3

2𝛾𝑧

−
3

2
) 𝑘𝐴) 

                +
2𝑐𝑜𝑠ℎ 𝜃𝜋

𝜎𝛾𝑡,2

(−
𝑘2𝐴2

2√𝛾𝑥√𝛾𝑧

𝑡𝑎𝑛ℎ 𝜃𝜋

+ (
1

𝛾𝑧
2

−
1

𝛾𝑧

)
𝑘3𝐴3

8
) 

Equation (23) is differentiable to axis-𝜉, 

𝛼 

𝜉 

𝑥 

𝑦 

𝑧 
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𝑑𝐴

𝑑𝜉
= (𝐺

𝑑𝑘

𝑑𝜉
+ 𝑘

𝑑𝐺

𝑑𝜉
)  𝜆(𝑘, 𝐴)                               …..(24) 

Where considering the law of conservation of wave number 

which will be shown in the next section, then 
𝑑𝜆

𝑑𝜉
= 0. 

The conservation of energy equation (Hutahaean (2024) 

applies, 

𝐺
Ƌ𝑘

Ƌ𝜉
+ 2𝑘

Ƌ𝐺

Ƌ𝜉
= 0 

This equation is written as, 

𝑘
Ƌ𝐺

Ƌ𝜉
= −

𝐺

2

Ƌ𝑘

Ƌ𝜉
 

Substituted to (24), obtaining  
𝑑𝐴

𝑑𝜉
=

𝐺

2

𝑑𝑘

𝑑𝜉
 𝜆(𝑘, 𝐴)                                         ……(25) 

This equation is multiplied by 
𝑘

𝑘
,  Considering (23), the 

following is obtained 
𝑑𝐴

𝑑𝜉
=

𝐴

2𝑘

𝑑𝑘

𝑑𝜉
                                                        …..(26) 

Wave number conservation (Hutahaean (2024)), 

𝑑𝑘 (ℎ +
𝐴
2

)

𝑑𝜉
= 0 

This equation is expressed as, 

𝑑𝐴

𝑑𝜉
= −

2

𝑘
(ℎ +

𝐴

2
)

𝑑𝑘

𝑑𝜉
− 2

𝑑ℎ

𝑑𝜉
 

 

Substituting the left side with (26) 

𝐴

2𝑘

𝑑𝑘

𝑑𝜉
= −

2

𝑘
(ℎ +

𝐴

2
)

𝑑𝑘

𝑑𝜉
− 2

𝑑ℎ

𝑑𝜉
 

Therefore, 

𝑑𝑘

𝑑𝜉
= −

4𝑘

(4ℎ+3𝐴)

𝑑ℎ

𝑑𝜉
                                          ….(27) 

The equation (25) is used to calculate changes in wave 

number 𝑘. To compute changes in wave amplitude, 

equation (26) should be utilized. Equation (26) incorporates 

breaking characteristics through 𝜆(𝑘, 𝐴), where the values 

of 𝑘 and 𝐴 determine its behavior.  

As water depth decreases, both 𝑘 and 𝐴 increase, causing 𝜆 

to decrease continuously until it reaches zero, signifying the 

onset of breaking. Post breaking, 𝜆 turns negative, resulting 

in a gradual reduction of wave amplitude until it diminishes 

completely.  

For a wave moving from point 𝜉 to point 𝜉 + 𝛿𝜉, the change 

in 𝑘 and 𝐴 is 

𝑘𝜉+𝛿𝜉 = 𝑘𝜉 + 𝛿𝜉 
𝑑𝑘

𝑑𝜉
  

𝐴𝜉+𝛿𝜉 = 𝐴𝜉 + 𝛿𝜉 
𝑑𝐴

𝑑𝜉
  

The equation for calculating changes in 𝐺 is formulated 

using the energy conservation equation which can be 

written as. 

Ƌ𝐺

𝐺
= −

1

2

Ƌ𝑘

𝑘
 

Equation ini Is integrated into,, 

∫
Ƌ𝐺

𝐺

𝜉+𝛿𝜉

𝜉

= −
1

2
∫

Ƌ𝑘

𝑘

𝜉+𝛿𝜉

𝜉

 

ln 𝐺𝜉+𝛿𝜉 = ln 𝐺𝜉 −
1

2
(ln 𝑘𝜉+𝛿𝜉 − ln 𝑘𝜉) 

𝐺𝜉+𝛿𝜉 = 𝑒ln 𝐺𝜉−
1
2

(ln 𝑘𝜉+𝛿𝜉−ln 𝑘𝜉)
 

 

8.2. Outcome of the shoaling-breaking model. 

The shoaling-breaking model examines waves with a period 

of 8 seconds and a significant wave height, 𝐻 = 2.72 m 

(See Table 4), propagating over a bottom slope 

characterized by 
𝑑ℎ

𝑑𝑥
= −0.02.  

 
Fig (2) Shoaling-breaking analysis 

The calculation employs parameters 𝜃 = 1.75 and 𝜀 =

0.01. Fig (2) illustrates the outcomes of the shoaling and 

breaking analysis. 

 

The shoaling-breaking analysis results are depicted in 

Figure (2), where the breaker height 𝐻𝑏 =3.165 m, breaker 

depth ℎ𝑏 =6.387 m, and the breaker depth index 
𝐻𝑏

ℎ𝑏
=

0.496. This differs notably from McCowan's (1894) 

criterion, where 
𝐻𝑏

ℎ𝑏
= 0.78. 

 

According to Komar and Gaughan (1972), the breaking 

wave height is given by: 

 

𝐻𝑏 = 0.39 𝑔
1

5⁄ (𝑇0𝐻0
2)

2
5⁄                     

 

Using 𝑇0 = 8.0 sec., 𝐻0 = 2.72 m, 𝑔 = 9.81 m/sec2, 𝐻𝑏 =

3.15 m. The breaking wave height from the model closely 

aligns with the Komar and Gaughan (1972) equation. 

 

Next, we will examine the results of the shoaling-breaking 

model across several wave periods, focusing on the 

-2

0

2

4

6

8
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0 5 10

H
 &

 L
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m
)

water depth h (m)
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maximum wave height in each period as detailed in Table 

(4). The calculations maintain consistent parameters 𝜃 =

1.75 and 𝜀 = 0.01. The model outcomes are summarized in 

Table (5). 

Table (5) Shoaling breaking outcomes 

𝑇 

(sec) 

𝐻0 

(m) 

𝐻𝑏  

(m) 

ℎ𝑏 

(m) 

𝐻𝑏

ℎ𝑏

 
𝐻𝑏−𝐾𝐺 

(m) 

6 1.53 1.781 3.593 0.496 1.772 

7 2.082 2.426 4.896 0.496 2.411 

8 2.72 3.165 6.387 0.496 3.15 

9 3.444 3.995 8.06 0.496 3.988 

10 4.252 4.93 9.95 0.496 4.923 

11 5.146 5.945 11.996 0.496 5.958 

12 6.124 7.081 14.289 0.496 7.091 

13 7.186 8.331 16.811 0.496 8.321 

14 8.334 9.662 19.499 0.496 9.65 

15 9.568 11.081 22.363 0.496 11.079 

 

Based on the results of the shoaling-breaking model, 
𝐻𝑏

ℎ𝑏
 

remains constant across all wave periods, specifically 
𝐻𝑏

ℎ𝑏
=

0.496.  The breaker height 𝐻𝑏  closely matches the Komar-

Gaughan (1972) breaker height 𝐻𝑏−𝐾𝐺, with a minimal 

difference typically in the second decimal place. 

 

To achieve 
𝐻𝑏

ℎ𝑏
  closer to McCowan's (1894) criterion, the 

model is executed using a deep water coefficient 𝜃 =

1.182. 

 

Table (6) presents the results of the shoaling-breaking 

analysis 

𝑇 

(sec) 

𝐻0 

(m) 

𝐻𝑏  

(m) 

ℎ𝑏 

(m) 

𝐻𝑏

ℎ𝑏

 
𝐻𝑏−𝐾𝐺 

(m) 

6 1.528 1.779 2.28 0.781 1.77 

7 2.08 2.42 3.101 0.78 2.409 

8 2.718 3.152 4.038 0.78 3.148 

9 3.44 3.988 5.111 0.78 3.984 

10 4.246 4.932 6.32 0.78 4.918 

11 5.138 5.965 7.645 0.78 5.951 

12 6.116 7.085 9.08 0.78 7.083 

13 7.178 8.313 10.652 0.78 8.313 

14 8.324 9.65 12.368 0.78 9.641 

15 9.556 11.073 14.192 0.78 11.068 

It shows a reduction in 𝐻0  and 𝐻𝑏   with a relatively minor 

decrease, while there is a significant decrease in breaker 

depth ℎ𝑏, resulting 
𝐻𝑏

ℎ𝑏
= 0.78, aligning with McCowan's 

criterion.  

 

The initial criterion for determining 𝜃 is based on wave 

number conservation, where 
𝑑𝑘(ℎ+𝑧)

𝑑𝑥
= 0, implying 𝑘(ℎ +

𝑧) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. This condition is crucial for solving the 

Laplace equation using separation of variables. For deep 

water, tanh 𝑘 (ℎ +
𝐴

2
) ≈ tanh 𝑘ℎ ≈ 1., leading to 𝑘 (ℎ +

𝐴

2
) ≈ 𝑘ℎ = 𝜃𝜋, where tanh 𝜃𝜋 ≈ 1. Typically, 𝜃 ≥ 1.75 

satisfies this condition. However, from the shoaling-

breaking model results, 𝑘 (ℎ +
𝐴

2
)  or ≈ 𝑘ℎ does not need to 

be exactly 1. With 𝜃 = 1.182, we find tanh 𝜃𝜋 =

0.988104, which is slightly less than 1 but still close. 

 

To achieve 
𝐻𝑏

ℎ𝑏
= 0.8, one could consider 𝜃 = 1.158.  

However, determining the most suitable 𝜃 and 
𝐻𝑏

ℎ𝑏
 values 

requires additional data, including laboratory and analytical 

results. 

 

By adhering to McCowan's breaker depth index (1894), the 

deep water depth is 

 

ℎ0 =
1.182𝜋

𝑘0

−
𝐴0

2
 

ℎ0 is deep water depth , 𝐴0 is deep water wave amplitude 

and 𝑘0 is deep water wave number. 

 

8.2 Refraction-Diffraction Model  

The shoaling-breaking analysis discussed focuses on wave 

transformation along the direction of wave propagation, 

specifically along the 𝜉 axis. Refraction-diffraction 

analysis, on the other hand, examines wave transformations 

within a plane, typically the (𝑥, 𝑦) plane. The changes in 

wave number 𝑘 and wave amplitude 𝐴 along the horizontal 

axis 𝑥, as depicted in Figure 1, are related to the variables 𝜉 

and 𝑥. 
Ƌ𝑘

Ƌ𝑥
=

Ƌ𝑘

Ƌ𝜉
cos 𝛼 

Ƌ𝐴

Ƌ𝑥
=

Ƌ𝐴

Ƌ𝜉
cos 𝛼 

With these two equations, the values of 𝑘𝑥+𝛿𝑥  and 𝐴𝑥+𝛿𝑥 

can be calculated. By knowing the value of 𝑘𝑥+𝛿𝑥 the value 

of 𝐺𝑥+𝛿𝑥can be calculated. 

𝐺𝑥+𝛿𝑥 = 𝑒ln 𝐺𝑥−
1
2

(ln 𝑘𝑥+𝛿𝑥−ln 𝑘𝑥)
 

Wave direction at point 𝑥 + 𝛿𝑥, calculated by Equation, 
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𝛼 = atan (
𝑢

𝑣
) 

Ƌ𝛼

Ƌ𝑥
=

𝑢
Ƌ𝑣
Ƌ𝑥

− 𝑣
Ƌ𝑢
Ƌ𝑥

𝑢2 + 𝑣2
 

In the following section, we present the results of the 

refraction-diffraction model applied to submerged island 

bathymetry (Fig. 3). The model considers a wave with a 

period 𝑇 = 8.0 sec and amplitude 𝐻 = 2.4 m, incident at an 

𝛼 = 00relative to the horizontal -𝑥. The calculation 

parameters used are 𝜃 = 1.182 and 𝜀 = 0.01.      

Figures 4 and 5 depict the results of the refraction-

diffraction model. These figures demonstrate that the model 

effectively simulates both refraction-diffraction and 

shoaling-breaking phenomena. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

Fig (3) Submerged island bathymetric contour. 

 

              
Fig (4) Wave height contour on the submerged island 

        
Fig (5) 3-D Wave height, on submerged island 

 

IX. CONCLUSION 

Increasing the accuracy of KFSBC integration leads to 

improvements in both critical wave steepness and breaking 

wave steepness. Moving from zero-order integration 

accuracy to second-order accuracy results in significant 

changes in both critical wave steepness and breaking wave 

steepness. However, the transition from second-order to 

third-order accuracy shows minimal changes in these 

parameters, indicating convergence of integration. 

The first conclusion drawn is that the integration method 

employed is correct and suitable for the analysis. 

Furthermore, the convergence of integration results 

suggests that third-order accuracy can be considered 

sufficient, with the resulting wave amplitude function 

showing excellent performance. 

The critical wave steepness and breaking wave steepness 

obtained represent final values and can serve as reliable 

references. Similarly, the resulting breaking wave height is 

accurate. 

Although analytical equations for calculating breaker depth 

or breaker depth index were not derived in this research, the 

shoaling model provides estimates of breaker depth. There 

exists a correlation between deep water depth and breaker 

depth: greater deep water depth corresponds to greater 

breaker depth, and vice versa. Certainty about breaker depth 

implies certainty about deep water depth, and vice versa. 

Currently, the breaker depth index derived from empirical 

research by previous investigators serves as an approach for 

estimating deep water depth based on breaker depth. 
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