Discomallear Ligament: A Review with a clinical Approach

Thaisa Rebeca de Moura Vicente¹, João Vitor Tadashi Cosin Shindo¹, Daniela Vieira Buchaim^{2,3}, Elio Hitoshi Shinohara⁴, Patrícia Lopes Alcântara¹, Getúlio Duarte Júnior², Carlos Henrique Bertoni Reis², Adriana do Socorro Lima Figueiredo Flato², Rogério Leone Buchaim^{1,2*}

³Department of Human Anatomy and Neuroanatomy, Medical School, University Center of Adamantina (UniFAI), Adamantina (SP) 17800-000, Brazil

⁴School of Dentistry, Ibirapuera University, São Paulo (SP) 04661-100, Brazil

*Corresponding author: rogerio.buchaim@unimar.br

Abstract— The discomallear ligament is described as a fibrous connection that anatomically and functionally relates the malleus bone in the middle ear to the posteromedial portion of the joint capsule through the petrotympanic fissure. It is a structure that presents important clinical aspects, since it may be related to otologic symptoms in temporomandibular joint dysfunctions. The objective of the present study was to perform a systematic review of the presence of the discomallear ligament, its possible influences on otologic symptoms and correlation with temporomandibular dysfunction. The analyzed sources of the literature review were searched in PubMed, Scielo, Web of Science, Lilacs, Google Scholar and Ebsco databases through a combination of keywords. An analysis of anatomical specimens was performed through the inspection of 277 adult skulls and 9 infant skulls, in order to verify the presence of foramina in the petrotympanic fissure on both sides. A computed tomography image was included in this study and showed a hypodense circular structure suggestive of foramen and possible passage of this ligament towards the disc of the temporomandibular joint. The evaluation of the anatomical parts showed that the adult skulls analyzed, about 90% had a foramen on both sides, 1.44% on the right side only, 4.33% on the left side only and 3.61% did not present foramen in any of the sides. About the children's skulls, 33.3% had a foramen on both sides, 33.3% on the right side and 33.3% had no foramen on either side. In results, the methods evaluated and the studies analyzed show the anatomical relationship between the tympanic cavity and temporomandibular joint, as well as the existence of the discomallear ligament and its possible influence on the otologic symptoms caused by temporomandibular disorders.

Keywords— Temporomandibular joint, Malleus, Middle ear, Temporomandibular joint disorders.

I. INTRODUCTION

The stomatognathic system is closely related anatomically and ontologically to the region surrounding the middle ear structures (RAMÍREZ ARISTEGUIETA, BALLESTEROS ACUÑA, & SANDOVAL ORTIZ, 2009)(RODRÍGUEZ VÁZOUEZ, J. MERÍDA VELASCO, J, & JIMÉNEZ COLLADO, 1993). The discomallear ligament is one of the fibrous connections that relates the malleus to the posteromedial portion of the temporomandibular joint capsule (PINTO, 1962), is also described as a triangular-shaped band of connective tissue whose base is continuous with the posterior region of the joint capsule and disc, which is directed to the middle ear through the petrotympanic fissure (COLEMAN, 1970).

Little mentioned in the anatomy books (MORGAN, 1982)(BOCHENEK & REICHER, 1997)(STANDRING, 2005)(ALVES & DEANA, 2010), the discomallear ligament was first referred to in 1954 (REES, 1954), but its detailed description was performed in 1962 and is also described and demonstrated by several other authors (PINTO, 1962). It is a structure that penetrates the caudal end of Meckel's cartilage corresponding to an embryological remnant of the lateral pterygoid muscle (CHEYNET, GUYOT, RICHARD,

¹Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru (SP) 17012-901, Brazil ²Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília (SP) 17525-902, Brazil

LAYOUN, & GOLA, 2003). However, other researchers stated that Meckel's cartilage has no influence on the development of the temporomandibular joint and also that during the embryonic stage there is no evidence that the lateral pterygoid muscle attaches to the malleus (FURSTMAN, 1963)(YUODELIS, 1966).

The discomallear ligament is a structure that presents important clinical aspects (ALVES & DEANA, 2010). Some authors state that dysfunctions in the temporomandibular joint (TMD) cause alteration of the discomallear ligament, causing a displacement of the malleus, resulting in some symptoms such as tinnitus and deafness (PINTO, 1962)(IOANNIDES & HOOGLAND, 1983). Although the risks of otological symptoms are greater in individuals presenting with disorders such as pain during the opening and closing of the mouth or palpation of the temporomandibular joint (PASCOAL, 2001)(LAM, LAWRENCE, & TENENBAUM, 2001). The origin and possible relations between these structures are not fully understood (FELICIO, FARIA, & DA SILVA, 2004). This structure can usually be observed in dissected anatomical pieces. However, it is also possible to visualize it in concomitant computed tomography in sagittal sections. In the images, furthermore to discomallear ligament, structures related to temporomandibular joint are also observed within the petrotympanic fissure. In Cone Beam CT images, the petrotympanic fissure resembles a small lumen that extends in the direction of the epitympanic recess in the upper portion of the tympanic cavity, where inferiorly the malleus bone is located. Studies demonstrate the visualization in tomographic images and anatomical pieces that discomallear ligament connects to the head and anterior region of the malleus bone, disposed from the posterior and superior portion of the mandibular fossa, located in the temporal bone (ARAI & SATO, 2012).

Thus, the aim of the present study was to perform a systematic review of the presence of the discomallear ligament, its possible influences on otologic symptoms and correlation with temporomandibular dysfunction.

II. MATERIALS AND METHODS

2.1 Computed tomography (CT)

A computed tomography image was used to evaluate the presence of the discomallear ligament. The image covers the region of a temporomandibular joint on the left side and was obtained by a scanner I-CAT CT (Cone Beam Volumetric Tomography [I-CATVisionProgram]).

2.2 Anatomical Pieces Evaluation

This stage was based on a careful evaluation of skulls belonging to the Department of Biological Sciences, Anatomy Discipline of School of Dentistry of Bauru- University of São Paulo (FOB-USP). The inspection of the pieces was done with the naked eye and with the aid of a hand magnifier with lighting 75 mm in diameter and increase of 6 times, of the brand Western 3455. It consisted in identifying the presence or absence of foramina in the region of the petrotympanic fissure on the left and right sides of 277 (two hundred and seventyseven) adult skulls and 9 (nine) children skulls.

2.3 Data source

This literature review contains information available in the databases PubMed, Scielo, Web of Science, Lilacs, Google Scholar and Ebsco, using the following keywords: discomallear ligament / discomalleolar ligament, temporomandibular disorders, temporomandibular dysfunction, and petrotympanic fissure. This led to the initiation of a search strategy and articles published between 2006 and 2016 were included, using a keyword search to obtain information about the discomallear ligament (figures 1-6).

2.4 Data extraction

After analyzing and reviewing the researched scientific articles, ten relevant studies related to the objectives of the study were found. Several studies resulting from the research were read with the objective of identifying relevant information on the subject in question.

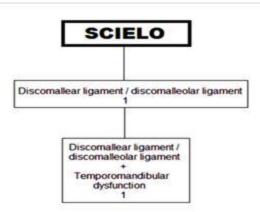


Fig.1: Scielo Keywords combination.

Papers extracted from the Scielo database:

1- Frequency of occurence of the discomalleolar ligament in the adult man (ALVES; DEANA, 2010).

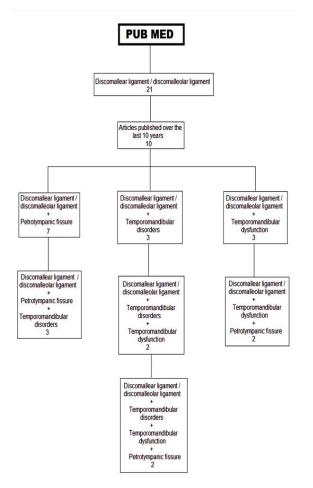


Fig.2: PubMed Keywords combination.

Papers extracted from the PubMed database:

1- Prevalence of the types of the petrotympanic fissure in the temporomandibular joint dysfunction (ÇAKUR et al., 2011).

2- Classifications of tunnel-like structure of human petrotympanic fissure by cone beam CT (SATO et al., 2008).

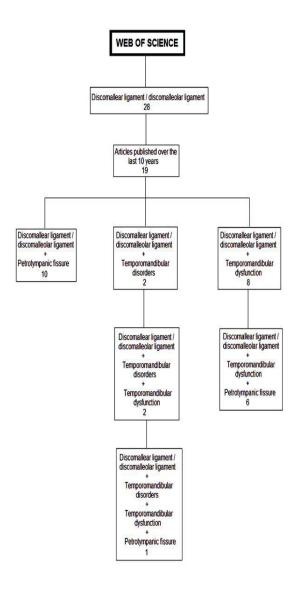


Fig.3: Web of Science Keywords combination.

Papers extracted from the Web of Science database:

1- Correlation between tinnitus and petrotympanic fissure status among patients with temporomandibular joint dysfunction (ÇAKUR; YASA, 2016).

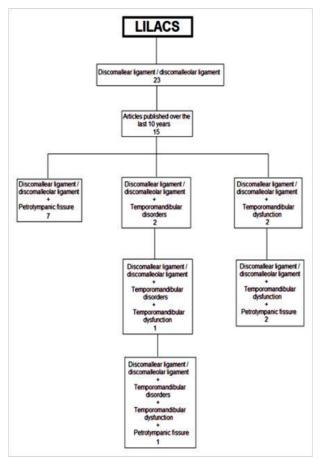
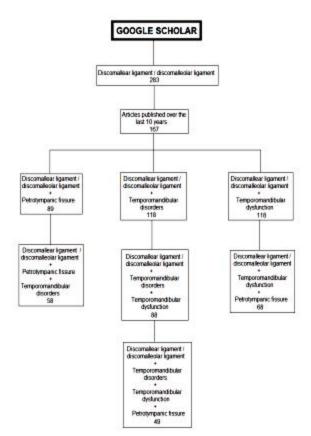
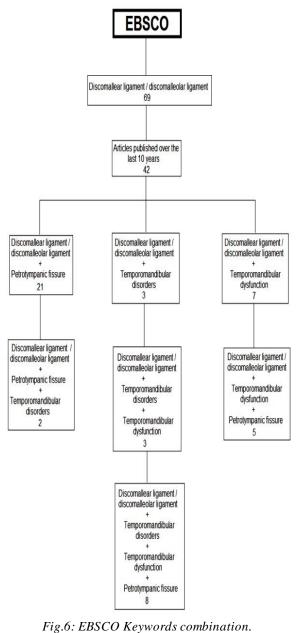


Fig.4: LILACS Keywords combination.

Papers extracted from the LILACS database:

1- Classifications of tunnel-like structure of human petrotympanic fissure by cone beam CT (SATO et al., 2008).




Fig.5: Google Scholar Keywords combination.

Papers extracted from the Google Scholar database:

1- A direct anatomical study of the morphology and functionality of disco-malleolar and anterior malleolar ligaments (ARISTEGUIETA; ACUNA; ORTIZ, 2009).

2- Anatomical study of the human discomallear ligament using cone beam computed tomography imaging and morphological observations (ARAI; SATO, 2011).

3- A study of the discomalleolar ligament in the adult human (ROWICKI; ZAKRZEWSKA, 2006).

Papers extracted from the EBSCO database:

1- Anatomical and functional aspects of ligaments between the malleus and the temporomandibular joint (SENCIMEN et al., 2008).

2- Signs and Symptoms of Temporomandibular Joint Disorders Related to the Degree of Mouth Opening and Hearing Loss (KITSOULIS et al., 2016).

3 - Ossification of the petrotympanic fissure: clinical morphological analysis and implications (MONTEIRO; ENNES; ZORZATTO, 2011).

III. RESULTS

Anatomical Computed tomography (CT) and **Pieces Evaluation**

It can be observed that the tomographic image (figure 7) used in the present study has a circular hypodense structure, in the region of the petrotympanic fissure, near the mandibular fossa of the temporal bone, suggestive of foramen and a possible passage of the discomallear ligament towards posterior region of the joint capsule of the disc of the temporomandibular joint.

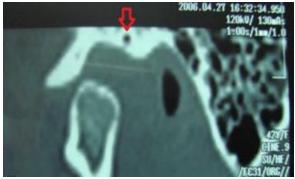


Fig.7: Possible place of passage of the discomaleolar ligament demonstrated by the red arrow.

The evaluation of the skulls resulted in two tables, one for adult skulls (table 1) and one for children's skulls (table 2). About adult skulls analyzed, 90% presented foramen on both sides, 1.44% presented foramen only on the right side, 4.33% presented foramen only on the left side, and 3.61% presented no foramen on either side. Of the children's skulls, 33.3% had a foramen on both sides, 33.3% on the right side, and 33.3% had no foramen on either side. Two images were obtained (Figures 8 and 9) in order to demonstrate to the naked eve, the presence of the foramina in the petrotympanic fissure.

Table 1: Analysis of absence or presence of foramen in the region of petrotympanic fissure in adult skulls.

	BOTH SIDES	JUST ON THE RIGHT SIDE	JUST ON THE LEFT SIDE
ABSENCE OF FORAME	10	Х	Х
PRESENCE OF FORAME	251	4	12

Table 2: Analysis of absence o	r presence of j	foramen in
the region of petrotympanic fis	sure in childr	en 's skulls.

	BOTH SIDES	JUST ON THE RIGHT SIDE	JUST ON THE LEFT SIDE
ABSENCE OF FORAME	3	Х	Х
PRESENCE OF FORAME	3	3	0

Fig.8: Presence of foramen in the petrotympanic fissure on the right side, demonstrated by the red arrow.

Fig.9: Presence of foramen in the petrotympanic fissure on the left side, demonstrated by the red arrow.

Literature review

After analyzing the combination of the keywords used for this literature review, a table with a brief summary of each of the extracted papers was obtained (table 3).

Authors	Objective	Methods	Results	Conclusion
Çakur et al.	To investigate the	134 TMD patients	In the DVT (dental	The low percentage
(2011)	prevalence of	examined for type of	tomography) scans, PTF	of type 2 PTF and
	petrotympanic fissure	petrotympanic fissure	(petrotympanic fissure)	high percentage of
	types in	by means of dental	types 1, 2 and 3 were	type 1 PTF should
	temporomandibular	tomography. Three	observed in 67.2%,	be taken into
	dysfunction with dental	types were described:	1.5% and 31.3% of the	account during pre-
	tomography and	wide tunnel structure	cases, respectively. We	surgery planning
	correlation with age.	(type 1); tunnelled	found no significant	related to TMD.
		structure at the	relationship between	
		entrance of the	age or gender and PTF	
		petrotympanic fissure	type`.	
		that gradually		
		decreases towards the		
		tympanic cavity (type		
		2), a tunnel-shaped		
		structure that is well		
		open at the entrance of		
		the mandibular fossa,		
		with a flat shape in the		
		middle and a narrow		
		exit in the tympanic		
		cavity (type 3).		
Sato et al.	To define the	The CBCT of PSR	The CBCT images	The structures are
(2008)	morphological	9,000 N (Asahi	revealed three types of	important to define
	characteristics of the	Roentgen Industry,	structures in the middle	the malleus limited
	discomallear ligament	Kyoto, Japan) was used	region of the	movement and the
	by Cone-Beam	to acquire	petrotympanic fissure	morphological
	Computed	temporomandibular	toward the malleus	characteristic of the

Table 3: Summary of Articles included in this Review.

	Tomography (CBCT)	joint images of 14	bone: wide tunnel	ligaments in this
	and the anatomical	human cadavers that	(29.2%, 7/24, type 1), a	bone may be relate
	dissection of Japanese	later had this region	widely open tunnel form	to
	cadavers.	dissected.	at the entrance of the	temporomandibula
			petrotympanic fissure (20.8%, 5/24, type 2),	joint pain, dysfunction and
			and the tunnel form is	auditory function
			widely open at the	
			entrance of the	
			mandibular fossa, with a	
			tunnel and flat form in	
			the middle and narrow	
			exit in the tympanic	
			cavity (41.7% 10/24,	
		20.1 1 1	type 3).	
Alves et al.	To determine the	20 hemi-heads	In all cases, the malleus	The discomallear
(2010)	frequency of	dissected with the	and disc of the	ligament was foun
	occurrence of the	purpose of exposing	temporomandibular	in all cases and ma
	discomallear ligament	the articular disc,	joint were connected by	be considered an
	in the adult man.	ossicles of the middle	ligaments that formed a	intrinsic ligament
		ear, lateral pterygoid	fibrous structure in the	the
		muscle and other	form of a thin blade.	temporomandibula
		structures of the region.		joint.
Çakur et al.	To evaluate the	100 patients with TMD	Although there was a	A short and broad
(2016)	correlation between	(50 with tinnitus, 50	negative correlation	petrotympanic
	tinnitus and	without tinnitus)	between tinnitus and	fissure (type 1) ma
	petrotympanic fissure	underwent concomitant	petrotympanic fissure	be associated with
	subtypes in patients	computed tomography	type (P < 0.001), there	higher incidence of
	diagnosed with	(CBCT) had the images	was no correlation	tinnitus in patient
	temporomandibular	analyzed and	between age and	with TMD.
	joint dysfunction	petrotympanic fissure	tinnitus or between age	
	(TMD).	classified as type 1	and petrotympanic	
		(wide tubular	fissure subtype. There	
		formation), type 2	was no significant	
		(double conical	association between	
		structure) or type 3	gender and tinnitus or	
		(single conical	petrotympanic fissure	
D · / 1		structure).	(P>0.05).	TT1
Ramirez et al.	Study of morphometric	3 temporal bone pieces	Mean lengths of the	There was an
(2009)	and functional aspects	of 12 cadavers were	anterior discomallear	anatomic and
	of anterior	microdissected to	and malleolar ligaments	functional
	discomallear and	expose ligaments under	of 6.88 mm (SD 0.81)	relationship betwee
	malleolar ligaments.	study. Electronic	and 4.22 mm (SD 1.17),	the human
		caliber (Mitutoyo) for	respectively. Malleus	temporomandibula
		recording	movement with	joint and the midd
		measurements in mm	discomallear traction in	ear.
		and applying forces to	30.5% of samples.	
		the mandible for	Correlation between the	
		reproduction of some	movement of the	
		physiological and	malleus and the length of the discomallear (R2	
			$\alpha \tau \tau \eta \sigma \sigma \eta \sigma \sigma \eta \sigma \eta \sigma \sigma \eta \sigma \sigma \tau (U')$	

		pathological scenarios.	= -0.499, p <0.05). Both	
			ligaments present in all	
			specimens.	
Arai et al.	Study of the	Dissection and	The posterior area of the	The structure of the
(2011)	morphological,	extraction of temporal	DML articulates with	petrotympanic
	macroscopic,	bones containing the	the head and anterior	fissure by which the
	histological structure	temporomandibular	process of the malleus	discomallear
	of the discomallear	joint of 27 human	through the	ligament attaches to
	ligament (DML) and	cadavers. Parts	petrotympanic fissure,	the malleus, as well
	evaluation of neuronal	submitted to	forming a narrow	as the histological
	structures within the	concomitant computed	channel. This was	and radiographic
	distribution of	tomography,	associated with bone	profiles of its
	substance P (SP) and	measurements and	mobility. In the anterior	structure, showed a
	peptide related to the	immunohistochemical	and posterior connective	relation with the
	calcitonin gene	methods.	tissue of the DML	mobility of the
	(CGRP).		associated with the disc,	malleus.
			fibers of the nerves	
			CGRP-, PGP9.5- and	
			SP-positive were	
			located around	
			numerous blood vessels.	
Rowicki et al.	To determine the	Evaluate of 14 samples	4 cases had a strip of	There is a clear
(2006)	frequency of	of the	tissue in the	connection between
	occurrence and	temporomandibular	temporomandibular	the
	morphology by means	and tympanic cavity by	joint, known as Pinto's	temporomandibular
	of endoscopic	means of an endoscope	ligament. Presence of	joint and the
	visualization of the	and then by coarse	DML in 11 cases,	tympanic cavity.
	discomallear ligament	dissection of an	triangular in 7 cases,	
	(DML) and its	operating microscope.	and longitudinal in 4	
	attachments, and if the		cases. Malleus	
	applied tension could		movement present in 3	
	trigger the movement		cases.	
	of the malleus.			

Kitsoulis et al. (2011)	Examination of the relation between signs and symptoms of temporomandibular dysfunction (TMD) and mouth opening, gender, joint and auditory symptoms and hearing loss.	464 university students. Mouth opening measured with Vernier calipers. Anamnestic questionnaire applied to stratify them into four groups based on the severity of TMD. Hearing symptoms and a recorded audiogram for each subject as well.	Overall incidence of signs and symptoms of TMD were 73.3%, higher in women (p- value 0.0001 <0.05). Hearing symptoms were associated with TMD severity (p-value 0.0001 <0.05) as well as maximu m mouth opening (p-value 0.004 <0.05). Audiometry showed that moderate and severe TMD was associated with hearing loss of medium and low tones, respectively (p- value 0.0001 <0.05). TMJ pain (p value 0.0001 <0.05), TMJ ankylosis (p-value 0.0001 <0.05), bruxism (p-value 0.0001 <0.05) and ear itching (p-value 0.0001 <0.05) were also statistically different between TMD and non-	Signs and symptoms of TMD are more common and severe in women. The severity of TMD correlated with the degree of mouth opening and the number of auditory symptoms. The absence or presence of mild TMD was associated with normal audiograms, while moderate and severe TMD were related to hearing loss in low and low tones, respectively. Bruxism, joint ankylosis, joint pain and ear itching were more common in TMD than patients without TMD.
			TMD.	
Sencimen et al. (2008)	To investigate the anatomical topography and the relation between the ligaments, malleus and temporomandibular joint and to determine the role of these ligaments in the movement of the malleus.	The malleus, incus, petrotympanic fissure (PTF), chorda tympani, anterior malleolar ligament (AML), discomallear ligament (DML), malleomandibular ligament, sphenomandibular ligament and disc joint were explored in 15 skulls. Tensile and tensile tests performed to clarify the role of these structures in the movement of the malleus.	In 12 cases two ligaments connected to the anterior part of the malleus. Of this same portion, another ligament that went to PTF was seen in 3 cases. In all of cases, the DML joined the retrodiscal tissues. In the other 3 cases, the medial and lateral parts of the ligament were attached to the retrodiscal tissue after passage through PTF.The thickness of the ligaments differed among the specimens. When the tension was applied to the DML, no	The overstretched of the condyle togethe with the ligaments between the inner ear ossicles and the TMJ may be the reason for unexplained otological problems

malleolar movement

			occurred, but when the	
			AML was overloaded,	
			the movement was	
			significant in 5 corpses;	
			small movement in 6	
			corpses, and no	
			movement in 4 corpses.	
Monteiro et al.	To characterize	Macroscopic and	Macroscopic analysis:	Macroscopic
(2011)	morphologically the	stereomicroscopic	areas suggestive of	analysis was not a
	calcification in the	analysis of the	calcification in 27	appropriate metho
	petrotympanic fissure	petrotympanic fissure	fissures (45%).	for this evaluation
	through three	of 30 human skulls.	Stereomicroscopic	and the ossificatio
	observations:	Analysis of scanned	analysis: areas of	of fissures increase
	macroscopic	images with the	calcification in 40	with aging,
	observation to the	UTHSCSA ImageTool	fissures. (66.6%). The	suggesting its
	naked eye,	3.0 computer program.	location of the areas of	influence on the
	stereomicroscopic	Measurement of the	calcification was not	causes of otalgia i
	observation and	total extension of the	regular considering the	cases of
	measurements made	areas of cracks and	total length of the	temporomandibula
	from digital images.	ossification.	various fissures and	joint dysfunction
			their division into	
			median and lateral	
			regions, occurring	
			randomly along the total	
			length of the fissures.	

IV. DISCUSSION

The aim of the present study was to perform a systematic review of the presence of the discomallear ligament, its possible influences on otological symptoms and correlation with temporomandibular dysfunction. Therefore, the methods evaluated and the studies analyzed shows the anatomical relationship between the tympanic cavity and temporomandibular joint, as well as the existence of the discomallear ligament and its possible influence on the otologic symptoms caused by temporomandibular disorders.

In addition, several studies state that there is an obvious anatomic and functional relationship between temporomandibular joint and the tympanic cavity (RODRÍGUEZ VÁZQUEZ, MÉRIDA VELASCO. MÉRIDA VELASCO, & JIMÉNEZ COLLADO. 1998)(CHEYNET et al., 2003)(ROWICK & ZAKRZEWSKA, 2006)(RAMÍREZ ARISTEGUIETA et al., 2009) (ÇAKUR, SÜMBÜLLÜ, DURNA, & AKGÜL, 2011). The discomallear ligament is one of the structures that allows this relationship and is not described in anatomical books (PATURET, 1951)(SAPPEY, 1867)(CRÉPY, 1967)(TESTUT & LATARJET, 1975)(ROMANES, 1987)(ROUVIÈRE & DELMAS. 1987)(DUBRUL, 1990)(WILLIAMS, 1995). This

ligament consists of a layer of superior fibers that insert into the anterior malleus process and the bone wall of the squamous portion of the petrotympanic fissure, and a layer of inferior fibers surrounding the anterior malleolar ligament (AML), the remnant of Meckel's cartilage, the chorda tympani and insert into the tympanic wall of the temporal bone (OGÜTCEN-TOLLER, 1995). Besides, it is considered an intrinsic ligament of the temporomandibular joint (RODRÍGUEZ VÁZQUEZ, MÉRIDA VELASCO, & JIMÉNEZ COLLADO, 1992)(RODRÍGUEZ VÁZOUEZ, J et al.. 1993)(RODRÍGUEZ VÁZQUEZ et al., 1998)(ALVES & DEANA, 2010).

Some authors consider discomallear ligament as part 1966)(TOLEDO AML. (BURCH. of FII HO ZORZETTO. & NAVARRO, 1985)(CESARIANI, TOMBOLINI, FAGNANI, & DOMENECH MATEU, 1991), superior extension of the sphenomandibular ligament in the tympanic cavity (BURCH, 1966) or the "small ligament" described by Pinto in 1962 (PINTO, 1962). In contrast, other authors do not agree with the statement that AML and discomallear ligament are part of the same structure and say that there is a well-established difference between them (COLEMAN, 1970)(KOMORI, SUGISAKI, TANABE, & KATOH, 1986)(OGÜTCEN-

TOLLER, 1995)(RODRÍGUEZ VÁZQUEZ et al., 1998)(Dai, Cheng, Wood, & Gan, 2007)(SENCIMEN et al., 2008).

Individuals with temporomandibular dysfunction may frequently exhibit otological symptoms. The dissonance of the stomatognathic system, such as muscular pain, TMJ pain, cervical pain, tooth sensitivity, joint noise and, in general, functional difficulties, were significantly associated with otologic symptoms in cases of temporomandibular disorders (FELICIO et al., 2004) (KITSOULIS, MARINI, ILIOU, GALANI, & ZIMPIS, 2011)(ÇAKUR & YAŞA, 2016).

The discomallear ligament presents mobility as it passes through petrotympanic fissure, caused by stretches in the TMJ disc during movements of the mandible (COULY & HUREAU, 1976)(CESARIANI et al., 1991)(SATO, ARAI, IMURA, KAWAI, & YOSUE, 2008)(ARAI & SATO, 2012). Consequently, it is believed that the mobility of this ligament according to the degree of closure of petrotympanic fissure determined during development may affect the movement of the middle ear bones (RODRÍGUEZ VÁZQUEZ et al., 1998). Some authors state that malleus mobility was observed when the discomallear ligament was overloaded (IOANNIDES & HOOGLAND, 1983)(O'RAHILLY & GARDNER, 1976)(PINTO, 1962)(TOLEDO FILHO et al., 1985). Nonetheless, other authors say that there is no evidence that discomallear ligament can cause movement of this ossicle chain (COLEMAN, 1970)(KOMORI et al., 1986)(LOUGHNER, LARKIN, & MAHAN, 1991)(OGÜTCEN-TOLLER, 1989)(ECKERDAL, 1995)(SENCIMEN et al., 2008).

The morphological characteristics of the ligament as well as its mobility may influence the movement of the malleus. This observation could strengthen the hypothesis of origin of pain in TMJ and of otalgia's (IOANNIDES & HOOGLAND, 1983)(RODRÍGUEZ VÁZQUEZ et al., 1998)(SATO et al., 2008)(SENCIMEN et al., 2008). Some authors have made a relation between the ligament in question and certain otologic manifestations caused by temporomandibular disorders (IOANNIDES & HOOGLAND, 1983)(Rohlin, Westesson, & Eriksson, 1985)(LOUGHNER et al., 1989)(OGÜTCEN-TOLLER & JUNIPER, 1993). Tinnitus may be due to the transmission of excessive mechanical forces bv discomallear ligament (PEKKAN, AKSOY, Hekimoglu, & Oghan, 2010)(RAMÍREZ ARISTEGUIETA et al., 2009)(ASH, ASH, ASH, & ASH, 1990). It may also be a possible pathway for the spread of infection from the middle ear to temporomandibular joint, such as otitis media, which can, through petrotympanic fissure, cause

capsulitis or even rupture of the ossicle joint (LOUGHNER et al., 1989). In contrast, other authors say that the ligament has no role in otological manifestations (CHEYNET et al., 2003)(ALVES & DEANA, 2010), because it does not contain sufficient force to mobilize the bones of the middle ear once it is firmly adhered to petrotympanic fissure (ALVES & DEANA, 2010).

V. CONCLUSION

For this purpose, that the methods evaluated and the studies analyzed show the anatomical relationship between the tympanic cavity and the temporomandibular joint, as well as the existence of the discomallear ligament and its possible influence on the otologic symptoms caused by temporomandibular disorders.

REFERENCES

- ALVES, N., & DEANA, N. F. (2010). Frequency of Occurence of the Discomalleolar Ligament in the Adult Man. *International Journal of Morphology*, 28(2), 515– 518. https://doi.org/10.4067/s0717-95022010000200029
- [2] ARAI, H., & SATO, I. (2012). Anatomical study of the human discomallear ligament using cone beam computed tomography imaging and morphological observations. *Okajimas Folia Anatomica Japonica*, 88(3), 89–101. https://doi.org/10.2535/ofaj.88.89
- [3] ASH, M., ASH, C., ASH, J., & ASH, G. (1990). Current concepts of the relationship and management of temporomandibular disorders and auditory symptoms. J *Mich Dent Assoc*, 72(11–12), 550–555.
- [4] BOCHENEK, A., & REICHER, M. (1997). *Anatomia Humana* (11th ed.). Warszawa: PZWL.
- [5] BURCH, J. G. (1966). The cranial attachment of the sphenomandibular (tympanomandibular)ligament. *The Anatomical Record*, 156(4), 433–437.
- [6] ÇAKUR, B., SÜMBÜLLÜ, M., DURNA, D., & AKGÜL,
 H. (2011). Prevalence of the types of the petrotympanic fissure in the temporomandibular joint dysfunction. *Acta Radiol*, 52(5), 562–565.
- [7] ÇAKUR, B., & YAŞA, Y. (2016). Correlation Between Tinnitus and Petrotympanic Fissure Status Among Patients With Temporomandibular Joint Dysfunction. J Oral Maxillofac Surg, 74(1), 47–52.
- [8] CESARIANI, A., TOMBOLINI, A., FAGNANI, E., & DOMENECH MATEU, J. (1991). The anterior ligament of the human malleus. *Acta Anat (Basel)*, 42(4), 313-6.
- [9] CHEYNET, F., GUYOT, L., RICHARD, O., LAYOUN, W., & GOLA, R. (2003). Discomallear and maleomandibular ligaments: Anatomical study and clinical applications. *Surgical and Radiologic Anatomy*, 25(2), 152–157. https://doi.org/10.1007/s00276-003-0097-y
- [10] COLEMAN, R. D. (1970). Temporomandibular Joint: Relation of the Retrodiskal Zone to Meckel's Cartilage and Lateral Ptery goid Muscle. *Journal of Dental Research*,

49(3),

626–630.

https://doi.org/10.1177/00220345700490032701
[11] COULY, G., & HUREAU, J. (1976). [The oto-meniscal relationship of temporo-mandibular joint in the new-born man (author's transl)]. Arch Anat Histol Embryol., 59, 143-50.

- [12] CRÉPY, C. (1967). Anatomie Cervico-Faciale. (1st ed.). Paris: Masson.
- [13] Dai, C., Cheng, T., Wood, M. M., & Gan, R. Z. (2007). Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: Experiment and modeling. *Hear Res*, 230(1–2), 24–33.
- [14] DUBRUL, E. . (1990). *Anatomia Oral.* Barcelona: Ediciones Doyma.
- [15] ECKERDAL, O. (1991). The petrotympanic fissure: a link connecting the tympanic cavity and the temporomandibular joint. *Cranio*, 9(1), 15–22.
- [16] FELICIO, C., FARIA, T., & DA SILVA, M. A. M. . (2004). Desordem Temporomandibular: relações entre sintomas otológicos e orofaciais. *Rev Bras Otorrinolaringol*, 70(6), 786–793.
- [17] FURSTMAN, L. (1963). The early development of the human temporomandibular joint. *American Journal of Orthodontics*, 49(9), 672–682.
- [18] IOANNIDES, C. A., & HOOGLAND, G. A. (1983). The disco-malleolar ligament: A possible cause of subjective hearing loss in patients with temporomandibular joint dysfunction. *Journal of Maxillofacial Surgery*, *11*(C), 227– 231. https://doi.org/10.1016/S0301-0503(83)80053-8
- [19] KITSOULIS, P., MARINI, A., ILIOU, K., GALANI, V., & ZIMPIS, A. (2011). Signs and Symptoms of Temporomandibular Joint Disorders Related to the Degree of Mouth Opening and Hearing Loss. *BMC Ear Nose Throat Disord*, 11(5).
- [20] KOMORI, E., SUGISAKI, M., TANABE, H., & KATOH, S. (1986). Discomalleolar Ligament in the Adult Human. *Cranio*, 4(4), 299–305.
- [21] LAM, D., LAWRENCE, H., & TENENBAUM, H. (2001). Aural symptoms in temporomandibular disorder patients attending a craniofacial pain unit. J Orofac Pain, 15(2), 146–157.
- [22] LOUGHNER, B. A., LARKIN, L. H., & MAHAN, P. E. (1989). Discomalleolar and anterior malleolar ligaments: Possible causes of middle ear damage during temporomandibular joint surgery. *Oral Surgery, Oral Medicine, Oral Pathology, 68*(1), 14–22. https://doi.org/10.1016/0030-4220(89)90108-4
- [23] MORGAN, D. . (1982). Diseases of the tempormandibular apparatus: A multidisciplinary aproach. Toronto: Mosby.
- [24] O'RAHILLY, R., & GARDNER, E. (1976). *The embryology of bone and joints*. IAP.
- [25] OGÜTCEN-TOLLER, M. (1995). The morphogenesis of the human discomalleolar and sphenomandibular ligaments. *J Craniomaxillofac Surg*, 23(1), 42-6.
- [26] OGÜTCEN-TOLLER, M., & JUNIPER, R. (1993). Audiological evaluation of the aural symptoms in

temporomandibular joint dysfunction. *J Craniomaxillofac Surg*, 21(1), 2–8.

- [27] PASCOAL, M. I. N. (2001). Prevalência dos sintomas otológicos na desordem temperomandibular: estudo de 126 casos. *Rev. Bras. Otorrinolaringol*, 67(5), 627–633.
- [28] PATURET, G. (1951). *Traité d'anatomie humaine* (1st ed.). Masson.
- [29] PEKKAN, G., AKSOY, S., Hekimoglu, C., & Oghan, F. (2010). Comparative audiometric evaluation of temporomandibular disorder patients with otological symptoms. *J Craniomaxillofac Surg*, 38(3), 231–234.
- [30] PINTO, O. (1962). A new structure related to the temporomandibular joint and middle ear. *The Journal of Prosthetic Dentistry*, 12(1), 95–103.
- [31] RAMÍREZ ARISTEGUIETA, L. M., BALLESTEROS ACUÑA, L. E., & SANDOVAL ORTIZ, G. P. (2009). A Direct Anatomical Study of the Morphology and Functionality of Disco-malleolar and Anterior Malleolar Ligaments. *International Journal of Morphology*, 27(2), 367–379. https://doi.org/10.4067/s0717-95022009000200011
- [32] REES, L. . (1954). The structure and function of mandibular joint. *Br Dent J.*, 96, 125–133.
- [33] RODRÍGUEZ VÁZQUEZ, J, F., MERÍDA VELASCO, J, R., & JIMÉNEZ COLLADO, J. (1993). Relationships between the temporomandibular joint and the middle ear in human fetuses. *J Dent Res*, 72(1), 62–66.
- [34] RODRÍGUEZ VÁZQUEZ, J. ., MÉRIDA VELASCO, J. ., & JIMÉNEZ COLLADO, J. (1992). Development of the human sphenomandibular ligament. *Anatomical Record*, 233(3), 453–460.
- [35] RODRÍGUEZ VÁZQUEZ, J. ., MÉRIDA VELASCO, J. ., MÉRIDA VELASCO, J. ., & JIMÉNEZ COLLADO, J. (1998). Anatomical considerations on the discomalleolar ligament. J Anat, 192(4), 617–621.
- [36] Rohlin, M., Westesson, P., & Eriksson, L. (1985). The correlation of temporomandibular joint sounds with joint morphology in fifty-five autopsy specimens. J Oral Maxillofac Surg, 43(3), 194–200.
- [37] ROMANES, G. J. (1987). *Cunningham Tratado de Anatomua*. Madrid: Interamericana-McGraw-Hill.
- [38] ROUVIÈRE, H., & DELMAS, A. (1987). Anatomia Humana: Descriptiva, Topografica y Funcional (1st ed.). Barcelona: Masson.
- [39] ROWICK, T., & ZAKRZEWSKA, J. (2006). A study of the discomalleolar ligament in the adult human. Folia morphologica. *Folia Morphologica*, 65(2), 121–125.
- [40] SAPPEY, P. (1867). *Traite d'anatomie descriptive* (1st ed.). Paris: Acta Anat.
- [41] SATO, I., ARAI, H., IMURA, K., KAWAI, T., & YOSUE, T. (2008). Classifications of tunnel-like structure of human petrotympanic fissure by cone beam CT. *Surg Radiol Anat*, *30*(4), 323–326.
- [42] SENCIMEN, M., YALCIN, B., DOĞAN, N., VAROL, A., OKÇU, K., OZAN, H., & AYDINTUĞ, Y. (2008). Anatomical and functional aspects of ligaments between

the malleus and the temporomandibular joint. Int J Oral Maxillofac Surg, 37(10), 943–947.

- [43] STANDRING, S. (2005). *Gray's anatomy: The anatomical basis of clinical practice* (39th ed.). Edinburgh: Elsevier.
- [44] TESTUT, L., & LATARJET, A. (1975). *Tratado de Anatomia Humana*. Barcelona: Salvat Editoes.
- [45] TOLEDO FILHO, J., ZORZETTO, N., & NAVARRO, J. (1985). Structures and relationships of the anterior malleus ligament. *Anatomischer Anzeiger*, 158(1), 13–22.
- [46] WILLIAMS, P. (1995). *Gray's Anatomy*. London: Churchill Livingstone.
- [47] YUODELIS, R. (1966). The morphogenesis of the human temporomandibular joint and its associated structures. J Dent Res, 45(1), 182–191.