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Abstract—In this article, the stiffness matrix of a column with linearly variable rectangular cross section along 

the longitudinal axis is obtained. As it is well known in structural analysis, the stiffness matrix can be obtained by 

inversion of the flexibility matrix.  So, the terms of this matrix for variable section beam are obtained via the 

energetic method of the principle of virtual works. Parameters called 𝛼𝑖 , 𝛼𝑓, 𝛽𝑓 𝑎𝑛𝑑 𝜀 are obtained and they are 

valid only for sections with variable dimensions. The stiffness matrix is then obtained in function of these 

parameters, from de inversion of the flexibility matrix.Finally, the modal analysis of the abutment is carried out 

for the case of the support of a bridge 100 meters high, whose numerical validation of the new bar finite element 

is performed by means of an exact solution by the Continuous Medium Technique (CMT) and by modeled finite 

elements in Ansys academic version. 
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I. INTRODUCTION 

In the structural analysis, the Method of Displacements 

is relevant, which consists of resolving the structure by 

obtaining the initial deformations and, following these 

deformations, it is necessary to draw the diagrams of the 

internal forces of the beam that make up the structure 

(SUSSEKIND, 1978) [1]. The incognitos of the problem 

are: the angle of rotation and the linear displacements at each 

node to be properly constrained from the displacements. 

This should be considered for the various columns. 

As illustrated in Kassimali [2], the advantage of using 

the Method of Displacements over the Method of Forces is 

based on the fact that there is no difficulty in choosing the 

incognitos, since the fundamental problem is only one per 

structure. Thus, the definition of hypergeometric grades 

emerges, which is the number of displacements (linear and 

angular) that can occur at the nodes of a given structure. For 

a high-length Bridge Pillar, it is economically relevant to 

adopt a variable cross section, with a more robust base than 

the top.  

Thus, by adding such a taper in the column shaft it is 

constructively more feasible that such a variation is linear, 

which motivates this article with exact attainment of the 

Stiffness Matrix of a beam element with rectangular linearly 

variable cross section along the axial axis x. In the field of 

approximate solutions in such determination, Luo et al. [3] 

and Brown [4] are quoted.Thus formulating a New Bar 

Finite Element. 

 

II. NEW BAR FINITE ELEMENT FOR LINEARLY 

VARIABLE RECTANGULAR SECTION 

a) Method of Forces 

Also called Flexibility Method and developed by James 

Clerk Maxwell in 1864, in order to determine deflections in 

trusses with beam links by labeled joints. To this end, the 

internal energy activated only by the normal effort was used 

[5]. Still, based on Timoshenko [5], when promoting the 

temporal delimitation of contributions in structural analysis 

in 1874, Otto Mohr's technique arises in response to the 

problem of nodes (beam joining) of trusses formed by two 

or more rivets,making the connections no longer labeled 

and, therefore, the need to compute the deformation internal 

force energy with all the internal forces. In equation 1 (a), 

the calculation of deflections is verified by the Maxwell 

formulation for labeled trusses. On the other hand, in 

equation 1 (b), the same occurs, however, for connections 

https://dx.doi.org/10.22161/ijaers.75.8
http://www.ijaers.com/
https://orcid.org/0000-0001-5750-3272
https://orcid.org/0000-0003-4497-8900


International Journal of Advanced Engineering Research and Science (IJAERS)                                [Vol-7, Issue-5, May- 2020] 

https://dx.doi.org/10.22161/ijaers.75.8                                                                                     ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                               Page | 60  

with two or more fixations per node, according to Mohr's 

formulation. 

𝛿𝑖0 = ∫
(𝑁𝑖. 𝑁0)

𝐸. 𝐴
Ω

 𝑑𝑥                                                         (1 𝑎) 

𝛿𝑖0 = ∫
(𝑁𝑖. 𝑁0)

𝐸. 𝐴
Ω

 𝑑𝑥 + ∫
(𝑀𝑖. 𝑀0)

𝐸. 𝐼
Ω

 𝑑𝑥 

+ ∫ 𝑘𝑐 .
(𝑉𝑖. 𝑉0)

𝐸. 𝐴
Ω

 𝑑𝑥      (1 𝑏) 

with: 𝛿𝑖0 = Nodal deflexion to the 𝑖 node; 𝑁𝑖, 𝑀𝑖, 𝑉𝑖 = Axial 

load, Flexion moment, Bending moment and Shear force for 

the real load of the structure; and 𝑁0, 𝑀0, 𝑉0 = Axial load,  

Bending moment and Shear force for the virtual load via 

P.V.W. acting on Node i. 

Yet, in Charlton [6], Maxwell´s publication entitled: “On 

reciprocal figures, frames and diagrams of forces” it is 

evident. In the work of the same author, page 83, Mohr´s 

publication entitled: " Beitrag Zur Theorie Du 

Bogenfachwerk träger " can be seen. In 1886, Heinrich 

Müller - Breslau postulated the systematization of the 

Method of Forces defined earlier by Maxwell and Mohr 

(KINNEY, 1957) [7]. The publication of such 

systematization is: "Die neue methoden der 

baukonstruktionen". The fundamental basis of the Method 

of Forces is the compatibilization of the angular and linear 

displacements of the extracted connections in order to 

establish extra equations and make the system of equations 

of the problem linearly independent and, therefore, make it 

solvable. 

The compatibilization of the displacements due to the 

connections extracted via definition of said method will be 

adopted from the positive convention for linear 

displacements in the positive direction of the x and y axes 

and rotation with vector notation in the same direction as the 

positive z axis. Thus, using a formulation present in Kiseliov 

[8], the system of displacement compatibility equations is 

written in matrix notation as: 

{𝑑} = [𝐹]. {𝑋} + {𝛿} + {𝛿𝑇}                                               (2) 

with: {𝑑} = Vector of displacements in the initial 

hyperstatic structure; {𝛿} = Vector of displacements in the 

fundamental problem; {𝛿𝑇} = Vector of displacements in 

the thermal problem; {𝑋} = Vector of incognitos for the 

Method of Forces; and [𝐹] = Flexibility Matrix. 

In order to assemble the Flexibility Matrix [F]. just 

consider the derived systems to become, in the background, 

both the fundamental problem responsible for the analysis 

of the actual and active load in the initial structure and the 

thermal problem. In addition, the vector {δ} is neglected in 

this analysis, since it is only desired to obtain the Flexibility 

Matrix. Such Systems derived from a fixed-fixed beam are 

shown in Figure 1 as much as the Main System.  

 

Fig. 1: Method of Forces: (a) Main System, (b) 1st. 

Derived System, (c) 2nd. Derived System, (d) 3rd. Derived 

System 

At the initial node there is the Degree of Freedom 𝜃𝑖. The 

final node is characterized by the degree of freedom also in 

rotation 𝜃𝑓 and, finally, 𝛿𝑓 in linear displacement for the 

final node. The system of equations is expressed by:  

{

𝜃𝑖

𝜃𝑓

𝛿𝑓

} = [

𝛼𝑖 𝜀 0
𝜀 𝛼𝑓 0

0 0 𝛽𝑓

] . {

𝑀𝑖

𝑀𝑓

𝑁𝑓

}                                           (3) 

with: 𝛼𝑖 , 𝛼𝑓 = Angular displacement for the initial and final 

node of the beam, respectively; 𝜀 = Angular displacement 

in a node contrary to where 𝛼𝑖 and 𝛼𝑓 occur; 𝑀𝑖,𝑀𝑓 = 

Flexion moment along the beam with unitary moment 

imposition; 𝑉𝑖 , 𝑉𝑓 = Shear force along the beam with unitary 

and vertical load imposition; and 𝑁𝑓 = Axial load of the 

beam with unitary and horizontal load imposition. 

b) Obtaining the displacements 𝛼, 𝛽 and 𝜀 via PVW 

The Principle of Virtual Works (PVW) was postulated 

by John Bernoulli in 1717 and is based on the Principle of 

Energy Conservation. This principle was also linked to the 

concept of virtual displacement. In virtual displacement, 

when the material point is in equilibrium, real displacement 

cannot occur. And for a particle to be in equilibrium, the 

condition of nullity to the work of all external forces must 

be satisfied (STAMATO, 1983) [9]. Figure 2 shows the 

linear and angular displacements 𝛽𝑓 , and𝛼𝑖, 𝛼𝑓 and 𝜀, 

respectively, as: 

𝛼𝑖 = ∫
(𝑀𝑖. 𝑀̅𝑖)

𝐸. 𝐼𝑧(𝑥)

𝐿

0

 𝑑𝑥 + ∫𝑘𝑐 .
(𝑉𝑖 . 𝑉̅𝑖)

𝐺. 𝐴(𝑥)

𝐿

0

 𝑑𝑥                      (4 𝑎) 

𝛼𝑓 = ∫
(𝑀𝑓. 𝑀̅𝑓)

𝐸. 𝐼𝑧(𝑥)

𝐿

0

 𝑑𝑥 + ∫𝑘𝑐 .
(𝑉𝑓. 𝑉̅𝑓)

𝐺. 𝐴(𝑥)

𝐿

0

 𝑑𝑥                    (4 𝑏) 

𝜀 = ∫
(𝑀𝑖.𝑀𝑓)

𝐸. 𝐼𝑧(𝑥)

𝐿

0

 𝑑𝑥 + ∫𝑘𝑐 .
(𝑉𝑖 . 𝑉𝑓)

𝐺. 𝐴(𝑥)

𝐿

0

 𝑑𝑥                       (4 𝑐) 
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𝛽𝑓 = ∫
(𝑁𝑓. 𝑁̅𝑓)

𝐸. 𝐴(𝑥)

𝐿

0

 𝑑𝑥                                                          (4 𝑑) 

 

Fig. 2: Internal Force Diagrams: (a)𝑀𝑖 ≡ 𝑀̅𝑖, (b) 𝑀𝑓 ≡

𝑀̅𝑓, (c) 𝑉 ≡ 𝑉̅, (d) 𝑁𝑓 ≡ 𝑁̅𝑓 

For the beam element of length L and dimensions in the 

cross section 𝐻𝑦(𝑥) and 𝐻𝑧(𝑥), as shown in Figure 3, the 

cross section area A (x) and the Moment of Inertia 𝐼𝑧(𝑥) 

around the z axis, is written as: 

 

Fig. 3: Beam Element with dimension in the linearly 

variable cross section along the axial axis x 

𝐼𝑧(𝑥) = 𝑘1. 𝑥
4 + 𝑘2. 𝑥

3 + 𝑘3. 𝑥
2 + 𝑘4. 𝑥 + 𝑘5              (5 𝑎) 

𝐴(𝑥) = 𝑘6. 𝑥
2 + 𝑘7. 𝑥 + 𝑘8                                               (5 𝑏) 

where: 𝑘1 = 𝐴.𝐶3;  𝑘2 = 𝐶2. (3. 𝐴. 𝐷 + 𝐵. 𝐶); 𝑘6 = 𝐴. 𝐶;  

𝑘3 = 3. 𝐶. 𝐷. (𝐴.𝐷 + 𝐵. 𝐶);  𝑘5 = 𝐵. 𝐷3;  𝑘8 = 𝐵.𝐷; 

𝑘4 = 𝐷2. (𝐴. 𝐷 + 3.𝐵. 𝐶. 𝐷); 𝑘7 = 𝐴. 𝐷 + 𝐵.𝐶; 

𝐵 = 𝑏𝑧; 𝐷 = 𝑏𝑦;  𝐴 =
ℎ𝑧 − 𝑏𝑧

𝐿
;   𝐶 =

ℎ𝑦 − 𝑏𝑦

𝐿
. 

with: 𝑏𝑧 , ℎ𝑧 −Cross section dimensions, parallel to axis 𝑧, in 

the initial and final section, respectively; 𝑏𝑦 , ℎ𝑦 −Cross 

section dimensions, parallel to axis 𝑦, in the initial and final 

section, respectively; 𝐸 −Longitudinal Elasticity Module; 

𝐺 − Cross Elasticity Module; 𝐼𝑧(𝑥) − Variation along the 

axial axis 𝑥 of the inertia moment surrounding axis 𝑧; 

𝐴(𝑥) − Variation along axial axis 𝑥 of the cross section 

area; 𝑘𝑐 − Shape factor and 𝐿 − Beam length. 

Analysing the Area Static Moment 𝑄(𝑥) for a 

rectangular section with dimensions 𝐻𝑦(𝑥) and 𝐻𝑧(𝑥), 

characterized in Figure 4, results in: 

 

Fig. 4: AreaStaticMoment 

𝐴′(𝑥) = [
𝐻𝑧(𝑥)

2
− 𝑧(𝑥)] . 𝐻𝑦(𝑥)                                    (6 𝑎) 

𝐼𝑧(𝑥) =
𝐻𝑧(𝑥).𝐻𝑦

3(𝑥)

12
                                                       (6 𝑏) 

𝑧̅′(𝑥) =
𝐴′(𝑥)

2. 𝐻𝑦(𝑥)
+ 𝑧(𝑥)                                                  (6 𝑐) 

𝑄(𝑥) = 𝐴′(𝑥). 𝑧̅′(𝑥) =
𝐻𝑦(𝑥)

2
. [

𝐻𝑧
2(𝑥)

4
− 𝑧2(𝑥)]      (6 𝑑) 

Proceeding the calculation of the shape factor 𝑘𝑐, after 

transforming the integration in area A into along the length, 

there is: 

𝑘𝑐 =
𝐴(𝑥)

𝐼𝑧2(𝑥)
. ∫

𝑄2(𝑥)

𝐻𝑦
2(𝑥)

 𝑑𝐴

𝐴

 

=
𝐴(𝑥)

𝐼𝑧
2(𝑥)

. ∫ [
𝑄2(𝑥)

𝐻𝑦
2(𝑥)

. 𝐻𝑦(𝑥)]  𝑑𝑧

𝐻𝑧(𝑥)

2

−
𝐻𝑧(𝑥)

2

                           (7) 

When applying equations 6 (a - d) in equation (7) and 

carrying out the integration in z and consequent 

simplifications, we conclude that the shape factor 𝑘𝑐remains 

unchanged along axis x with the following value: 

𝑘𝑐 =
5

6
                                                                                      (8) 

Finally, when applying the equations (5), 6 (a - d) and 

(8) in equations 4 (a - d), the flexibility coefficients 𝛼𝑖, 𝛼𝑓, 

𝜀 and 𝛽𝑓are attained, expressed by: 

➢ 𝒊𝒇𝑨.𝑫 ≠ 𝑩. 𝑪: 
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𝛼𝑖 =
12

𝐸. 𝜂3
. [𝜂1 − 𝜂2. ln (

𝐵 + 𝐴. 𝐿

𝐴
) + 𝜂2. ln (

𝐵

𝐴
)

+ 𝜂2. ln (
𝐷 + 𝐶. 𝐿

𝐶
) − 𝜂2. ln (

𝐷

𝐶
)] 

+
𝑘𝑐

𝐺. 𝜂4
. [ln (

𝐵 + 𝐴. 𝐿

𝐷 + 𝐶. 𝐿
) − ln(

𝐵

𝐷
)]          (9 𝑎) 

𝛼𝑓 =
12

𝐸. 𝜂7
. [𝜂5 + 𝜂6. ln (

𝐵 + 𝐴. 𝐿

𝐴
) − 𝜂6. ln (

𝐵

𝐴
)

− 𝜂6. ln (
𝐷 + 𝐶. 𝐿

𝐶
) + 𝜂6. ln (

𝐷

𝐶
)] 

+
𝑘𝑐

𝐺. 𝜂4
. [ln (

𝐵 + 𝐴. 𝐿

𝐷 + 𝐶. 𝐿
) − ln(

𝐵

𝐷
)]          (9 𝑏) 

𝜀 =
12

𝐸. 𝜂10
. [𝜂8 + 𝜂9. ln (

𝐵 + 𝐴. 𝐿

𝐴
) − 𝜂9. ln (

𝐵

𝐴
)

− 𝜂9. ln (
𝐷 + 𝐶. 𝐿

𝐶
) + 𝜂9. ln (

𝐷

𝐶
)] 

+
𝑘𝑐

𝐺. 𝜂4
. [ln (

𝐵 + 𝐴. 𝐿

𝐷 + 𝐶. 𝐿
) − ln (

𝐵

𝐷
)]           (9 𝑐) 

𝛽𝑓 =
1

𝐸
. [

ln (
𝐵+𝐴.𝐿

𝐷+𝐶.𝐿
) − ln (

𝐵

𝐷
)

(𝐴.𝐷 − 𝐵. 𝐶)
]                                          (9 𝑑) 

➢ 𝒊𝒇𝑨.𝑫 = 𝑩. 𝑪: 

𝛼𝑖 = 𝛼𝑓 =
4. 𝐿

𝐸. 𝐵.𝐷3
+

𝑘𝑐

𝐺. 𝐵.𝐷. 𝐿
                                (9 𝑒) 

𝜀 =
−2. 𝐿

𝐸. 𝐵.𝐷3
+

𝑘𝑐

𝐺. 𝐵.𝐷. 𝐿
                                            (9 𝑓) 

𝛽𝑓

=
𝐿

𝐸. 𝐵. 𝐷
                                                                                   (9 𝑔) 

where A, B, C and D are parameters linked to geometrical 

dimensions of the cross section. And yet, list yourself: 𝜂1 =

𝐿. (𝐴. 𝐷 + 𝐵. 𝐶). (2. 𝐵.𝐷 + 3. 𝐴. 𝐷. 𝐿 − 𝐵. 𝐶. 𝐿); 

𝜂3 = −2.𝐷2. 𝐿2. (𝐴. 𝐷 + 𝐵. 𝐶)3;   𝜂4 = 𝐿2. (𝐴. 𝐷 + 𝐵. 𝐶); 

2. 𝜂8 = −𝐿. (𝐴.𝐷 − 𝐵. 𝐶). (2. 𝐵. 𝐷 + 𝐴. 𝐷. 𝐿 + 𝐵. 𝐶. 𝐿); 

𝜂5 = −𝐿. (𝐴. 𝐷 − 𝐵. 𝐶). (2. 𝐵.𝐷 − 𝐴. 𝐷. 𝐿 + 3.𝐵. 𝐶. 𝐿); 

𝜂2 = 2.𝐷2. (𝐴. 𝐿 + 𝐵)2;  𝜂6 = 2.𝐵2. (𝐶. 𝐿 + 𝐷)2; 

𝜂7 = 2. 𝐿2. (𝐶. 𝐿 + 𝐷)2. (𝐴. 𝐷 − 𝐵. 𝐶)3;  

𝜂10 = 𝐷. 𝐿2. (𝐶. 𝐿 + 𝐷). (𝐴. 𝐷 + 𝐵. 𝐶)3; 

𝜂9 = 𝐵.𝐷. (𝐴. 𝐿 + 𝐵). (𝐶. 𝐿 + 𝐷). 

c) Method of Displacements 

Such method consists of resolving the structure by 

initially obtaining the deformations by means of the internal 

forces on the beams that make up the structure, while in the 

Method of Forces, extra bonds are extracted to structural 

staticity and stability. In the Method of Displacements, the 

locking of the bound nodes of the structure is promoted in 

order to attain the connection of the beams by means of 

embedments. In matrix notation, the system of equations of 

equilibria of the unbalancing forces by nodes is expressed as 

follows: 

{𝑀} = [𝐾]. {𝐷} + {𝛾} + {𝛾𝑇}                                           (10) 

where: {𝑀} = Vector of unbalancing forces; [𝐾] = Stiffness 

Matrix; {𝐷} = Vector of incognitos in the Method of 

Displacements; {𝛾} = Vetor of unbalancing forces in the 

fundamental problem fundamental; {𝛾𝑇} = Vector of 

unbalancing forces in the thermal problem; and 

𝑘𝑖, 𝑘𝑓, 𝑎, 𝑟𝑓 = Stiffness coefficients. 

Using the definitions in Kassimali[2] and Kiseliov [8], 

the Stiffness Matrix [K] will be the inverse of the Flexibility 

Matrix [F]. The terms of stiffness are concluded, such as: 

[𝐾] = [𝐹]−1 = [

𝛼𝑖 𝜀 0
𝜀 𝛼𝑓 0

0 0 𝛽𝑓

]

−1

= [

𝑘𝑖 𝑎 0
𝑎 𝑘𝑓 0

0 0 𝑟𝑓

]     (11 𝑎) 

𝑘𝑖 =
𝛼𝑓

𝛼𝑖. 𝛼𝑓 − 𝜀2
                                                              (11 𝑏) 

𝑘𝑓 =
𝛼𝑖

𝛼𝑖 . 𝛼𝑓 − 𝜀2
                                                              (11 𝑐) 

𝑎 =
−𝜀

𝛼𝑖 . 𝛼𝑓 − 𝜀2
                                                               (11 𝑑) 

𝑟𝑓 =
1

𝛽𝑓
                                                                               (11 𝑒) 

The present formulation was proposed by George Alfred 

Maney in 1915, and was also denominated Rotation-Arrow 

Method. See [10]; [11] and [12]. 

III. MATRIX CONDENSATION  

Based on Paz [13] and the application in the calculation 

of natural frequencies in Alves Filho (p. 200) [14], matrix 

condensation consists of rewriting the system of equations 

in terms of some of its variables. In Figure 5 shows a pillar 

with n subdivisions and (n + 1) nodes, as well as the 

resulting degrees of freedom (𝛿 and 𝜃) and nodal forces, in 

order to exemplify such a condensation procedure. 
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Fig. 5: column subdivision by finite elements of bar 

The ODE’s system remaining, for the non-damped 

vibration, expressed by: 

[
[𝑀𝜃𝜃] [𝑀𝜃𝛿]

[𝑀𝛿𝜃] [𝑀𝛿𝛿]
] . {

{𝜃̈}

{𝛿̈}
} + [

[𝐾𝜃𝜃] [𝐾𝜃𝛿]

[𝐾𝛿𝜃] [𝐾𝛿𝛿]
] . {

{𝜃}
{𝛿}

} = {
{𝑀}
{𝐹}

} 

(12) 

with: {𝜃}𝑇 = {𝜃1 𝜃2 𝜃3 … 𝜃𝑛−1 𝜃𝑛};  

{𝛿}𝑇 = {𝛿1 𝛿2 𝛿3 … 𝛿𝑛−1 𝛿𝑛}; 

{𝑀}𝑇 = {𝑀1 𝑀2 𝑀3 … 𝑀𝑛−1 𝑀𝑛};  

 

{𝐹}𝑇 = {𝐹1 𝐹2 𝐹3 … 𝐹𝑛−1 𝐹𝑛}. 

The submatrix[𝑀𝜃𝜃] presents the terms of rotational 

masses, with little representativeness (in magnitude) in 

relation to translational masses (included in the submatrix 

[𝑀𝛿𝛿]). From this statement, sub-matrices[𝑀𝜃𝛿] and [𝑀𝛿𝜃] 

are also disregarded, and equation is rewritten (12) as: 

[
[0] [0]
[0] [𝑀𝛿𝛿]

] . {
{𝜃̈}

{𝛿̈}
} + [

[𝐾𝜃𝜃] [𝐾𝜃𝛿]

[𝐾𝛿𝜃] [𝐾𝛿𝛿]
] . {

{𝜃}
{𝛿}

} = {
{𝑀}
{𝐹}

} 

(13) 

Expressing equation (13) in the form of a matrix 

equation system, we have: 

[𝐾𝜃𝜃]. {𝜃} + [𝐾𝜃𝛿]. {𝛿} = {𝑀}                                       (14 𝑎) 

[𝑀𝛿𝛿]. {𝛿̈} + [𝐾𝛿𝜃]. {𝜃} + [𝐾𝛿𝛿]. {𝛿} = {𝐹}                 (14 𝑏) 

In order to express the displacements { 𝛿 }, the rotation 

vector { 𝜃 } is isolated in equation (14 a) and applied to eq. 

(14 b), concluding: 

[𝑀𝛿𝛿]. {𝛿̈} + [𝐾𝛿𝜃]. ([𝐾𝜃𝜃]−1. {𝑀} − [𝐾𝜃𝜃]−1. [𝐾𝜃𝛿]. {𝛿})

+ [𝐾𝛿𝛿]. {𝛿} = {𝐹}                               (15) 

rearranging, there is: 

[𝑀𝛿𝛿]. {𝛿̈} + [𝐾∗]. {𝛿} = {𝐹∗}                                       (15 𝑎) 

with: [𝐾∗] = [𝐾𝛿𝛿] − ([𝐾𝛿𝜃]. [𝐾𝜃𝜃]−1. [𝐾𝜃𝛿]);   

{𝐹∗} = {𝐹} − ([𝐾𝛿𝜃]. [𝐾𝜃𝜃]−1. {𝑀}). 

and: [𝐾∗] the condensed stiffness matrix. and {𝐹∗} the 

condensed vector of transverse forces. 

Condensed ODE for proportionally dampened 

vibration([𝐶∗] = 𝛼𝑚 . [𝑀𝛿𝛿] + 𝛼𝑘. [𝐾
∗])is expressed by: 

[𝑀𝛿𝛿]. {𝛿̈} + [𝐶∗]. {𝛿̇} + [𝐾∗]. {𝛿} = {𝐹∗}                     (16) 

 

IV. VERIFICATION OF (FEM) MODELING VIA 

(CMT) 

Through the dynamic analysis of the pillar by the 

Continuous Medium Technique (CMT) processed in Melo 

[15], the differential equation of the problem is written, as: 

−[𝐽]. {𝑣′′′′} + [𝑆]. {𝑣′′} + [𝑀]. {𝑣̈} = {V𝑓
   ′}                  (17) 

Based on the WallPanels Theory (WPT), the differential 

equation of the dynamic request of the massive column 

shown in Figure 6 is expressed, through equation (17), as: 

−[𝐽]. {𝑞′′′′(𝑥, 𝑡)} + [𝑆]. {𝑞′′(𝑥, 𝑡)} + [𝑀]. {𝑞̈(𝑥, 𝑡)}

= {V𝑓
   ′(𝑥, 𝑡)}                                        (18) 

with: [𝐽] is the column stiffness matrix; [𝑆] is the lintel 

stiffness matrix (and for the massive pillar, modeled in this 

item of the thesis, it will be null); [𝑀] is the mass matrix of 

the abutment and 𝑞(𝑥, 𝑡)is the function of the displacements 

dependent on space and time. Through the harmonic 

analysis of equation (18) and imposing the procedure for the 

separation of variables, it is written: 

−𝑗. 𝑢′′′′(𝑥)

𝑢(𝑥)
=

−𝑚. 𝑔̈(𝑡)

𝑔(𝑡)
= −𝜆𝑎

2                                     (19) 

with: 𝑞(𝑥, 𝑡) = 𝑢(𝑥).𝑔(𝑡). The characteristic equation of 

ODE written in space is expressed, via equation (19), as: 

𝑗. 𝜔4 − 𝜆𝑎
2 = 0                                                                   (20) 

and by equation (20) solution is expressed:   

𝜔 =
√𝜆𝑎

√√𝑗

                                                                             (21) 

By calculating the stiffness, where j = E.I, together with 

Pfeil (p. 211) [16], concludes by the rigidity of the column 

shown in Figure 6, the following: 

𝑗 = 𝐸. 𝐼 = 𝐸. 𝛽. 𝐼𝑧𝑡𝑜𝑝𝑜
 

    = 4,67 𝑥 104 𝑃𝑎 . 1,2793 .
10 𝑚 . (5 𝑚)3

12

= 6,22326 𝑥 1012
𝑁

𝑚
 

(22) 

As presented inDziewolski[17]followed by the 

adjustment of the column stiffness using the coefficient𝛼 =
1

1,5⁄  (for simple structures)and is expressed via equation: 

√√𝑗 = √√
𝑗

𝐻2
. 𝛼 

            = √√
6,22326 𝑥 1012𝑁

𝑚

(100 𝑚)2
.

1

1,5
= 105,29633         (23) 
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Applying to equation (23) in equation (21) the first 

vibration frequencies of the bridge pillar, shown in Figure 6, 

are written as: 

𝜔 =
√𝜆𝑎

105,29633
                                                                  (24) 

 

V. COLUMN MODELING IN 5 FE APPLIED TO 

MODAL BRIDGE ANALYSIS 

In order to exemplify the use of the linearly variable 

rectangular section stiffness matrix in bridge pillars (See 

Figure6), cross-sectional dimensions at the base 𝑏𝑦 =

12.5 𝑚 and 𝑏𝑧 = 25 𝑚and, at the top, ℎ𝑦 = 5 𝑚 and ℎ𝑧 =

10 𝑚, and the modes of vibration are obtained through 

modal analysis [18], modeling via five finite elements [19] 

and general formulation for n mass presented in Warburton 

[20] and matrix condensation [21]; and [22]. The material 

used in the bridge is reinforced concrete of resistance class 

C - 40 [23]. Therefore, the Longitudinal Elasticity Module 

will be 𝐸 = 35 𝑥109𝑃𝑎 and the Poisson Coefficient will be 

𝜈 = 0,20.In order to validate the example, modeling is 

performed using the ANSYS academic version software. It 

should be noted that for the vibration modes, the dimensions 

adopted for the cross section become irrelevant. 

 

Fig. 6: Bridge with linearly variable section columns 

From this analysis, the coefficients for the generation of 

the column stiffness matrix and vibration frequencies 𝜔𝑖  and 

autoversors 𝜆𝑖
2, via the nullity of the determinant |[𝐾] −

𝜆. [𝑀]|, are obtained in Table 1, as follows: 

𝜆1
2 = 6.16906 𝑥 105 (

𝑟𝑎𝑑

𝑠
)

2

;   𝜆2
2

= 7.14143 𝑥 105 (
𝑟𝑎𝑑

𝑠
)
2

;  

𝜆3
2 = 7.83961 𝑥 105 (

𝑟𝑎𝑑

𝑠
)
2

;  𝜆4
2

= 8.34502 𝑥 105 (
𝑟𝑎𝑑

𝑠
)
2

; 

𝜆5
2 = 8.71653 𝑥 105 (

𝑟𝑎𝑑

𝑠
)
2

                                  (25. 𝑎 − 𝑒) 

𝜔1 = √
𝜆1

2

𝐻2
≡ 7.85434  

𝑟𝑎𝑑

𝑠
≡ 1.25006 𝐻𝑧; 

𝜔2 = 8.45070 
𝑟𝑎𝑑

𝑠
;     𝜔3 = 8.85415 

𝑟𝑎𝑑

𝑠
;  

𝜔4 = 9.13511 
𝑟𝑎𝑑

𝑠
;     𝜔5 = 9.33624 

𝑟𝑎𝑑

𝑠
      (26. 𝑎 − 𝑒) 

Table.1: Parameters for the generation of the stiffness 

matrix of the linearly variable section column 

Bar Finite Element 1 2 3 4 5 

𝑨 (𝑨𝑫𝑴) - 0.015 - 0015 - 0.015 - 0.015 - 0.015 

𝑩 (𝒎) 25.000 22.000 19.000 16.000 13.000 

𝑪 (𝑨𝑫𝑴) - 0.075 - 0.075 - 0.075 - 0.075 - 0.075 

𝑫 (𝒎) 12.500 11.000 9.500 8.000 6.500 

𝜶𝒊 ≡ 𝜶𝒇 (𝒙 𝟏𝟎𝟓) 6.540 4.430 2.890 1.799 1.050 

𝒌𝒊 (𝒙 𝟏𝟎𝟏𝟑) [N.m] 2.274 1.364 0.759 0.382 0.166 

𝒌𝒇 (𝒙 𝟏𝟎𝟏𝟑) [N.m] 2.261 1.356 0.754 0.379 0.165 

𝒂 (𝒙 𝟏𝟎𝟏𝟑) [N.m] 1.134 0.680 0.378 0.190 0.083 

When considering the five finite elements, the Stiffness 

[𝐾] and Mass [𝑀] Matrices for the pillar are worth: 

[𝐾]

=

[
 
 
 
 
1.701 𝑥 1013

7.634 𝑥 1011

3.178 𝑥 1010

1.196 𝑥 109

3.891 𝑥 107

7.634 𝑥 1011

1.019 𝑥 1013

4.241 𝑥 1011

1.596 𝑥 1010

5.193 𝑥 108

3.178 𝑥 1010

4.241 𝑥 1011

5.666 𝑥 1012

2.132 𝑥 1011

6.939 𝑥 109

1.196 𝑥 109

1.596 𝑥 1010

2.132 𝑥 1011

2.848 𝑥 1012

9.270 𝑥 1010

3.891 𝑥 107

5.193 𝑥 108

6.939 𝑥 109

9.270 𝑥 1010

1.238 𝑥 1012]
 
 
 
 
𝑁

𝑚
 

[𝑀]

=

[
 
 
 
 
1.955 𝑥 107

9.995 𝑥 105

0
0
0

9.995 𝑥 105

1.227 𝑥 107

6.761 𝑥 105

0
0

0
6.761 𝑥 105

7.281 𝑥 106

4.374 𝑥 105

0

0
0

4.374 𝑥 105

4.030 𝑥 106

2.685 𝑥 105

0
0
0

2.685 𝑥 105

1.984 𝑥 106]
 
 
 
 

  𝑘𝑔 

a) Validation via ANSYS  

Figure 7 shows a group of vibration modes, for the 

massive column of the bridge shown in Figure 6, modeling 

in the ANSYS software. 62,468 nodes and 13,635 finite 

elements were used, producing a mesh with 93.99%.  

The validation of the first vibration frequency 𝑓1 (using 

equation 26 a) is processed and results in: 

𝑓1 =
𝜔1

2𝜋
=

7.85434 
𝑟𝑎𝑑

𝑠

2𝜋
= 1.25005 𝐻𝑧                          (27) 
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Comparing the first vibration frequency by modeling in 

ANSYS, see Figure 7, with the value presented in equation 

(27), an approximation of: 

Δ(%) =
(1.25005 − 1.23300) 𝐻𝑧

1.25005 𝐻𝑧
. 100% = 1.36 %    

(28) 

 

Fig. 7: Vibration modes in bridges with linearly variable 

section columns: (a) 1st mode, (b) 2nd mode, (c) 3rd mode 

 

The 1.36% discrepancy between the first vibration 

frequency, via manual calculation by finite bar elements and 

by modeling in the ANSYS software, is due to the small 

number of bar elements used in manual modeling. However, 

the formulation present here is quite satisfactory to verify 

the order of magnitude of the results obtained via modeling 

in commercial software. 

b) Validation via CMT 

Using the first root of the polynomial presented in 

equation (25a), the first vibration frequency of the abutment 

(via CMT) is expressed as: 

𝜔1 =
√6.16906 𝑥 105 𝑟𝑎𝑑/𝑠

105.29633
= 7.45927  

𝑟𝑎𝑑

𝑠
      (29 𝑎) 

and in fundamental frequency, there is: 

𝑓1 =
𝜔1

2𝜋
= 1.18718 𝐻𝑧                                           (29 𝑏) 

concluding by divergence in relation to the modeling 

performed in ANSYS, see Figure 7, the following: 

Δ(%) =
|𝑓𝑇𝑀𝐶 − 𝑓𝐴𝑁𝑆𝑌𝑆|

𝑓𝑇𝑀𝐶
. 100% 

            =
|1.18718 − 1.233| 𝐻𝑧

1.18718 𝐻𝑧
. 100% = 3.87 %    (29 𝑐) 

It is observed that the percentage difference by the CMT 

was greater than by the bar FEM, this due to the 

interpolation performed in the coefficient𝛽 of equation (22). 

As well as, it is verified the use of the adjustment coefficient 

𝛼 in equation (23). While in equation (28) the analysis is 

processed by the finite element method, eliminating the 

imposition of such a coefficient𝛼. Even so, it is possible to 

satisfactorily validate the modal analysis of the column 

shown in Figure 6, both by FEM and CMT. 

 

VI. CONCLUSION 

In this article, the terms of the Flexibility Matrix for a 

variable section were obtained through the internal energy 

activated by the internal forces acting on the beam element 

for the Derivative Systems. The contribution of this 

publication is the obtention of the stiffness matrix by 

parameters easily obtained from the flexibility matrix which 

takes into account the variation of the dimensions of the 

element cross section. When analyzing the shape factor 𝑘𝑐, 

it was found to be a constant value according to the section 

shape. After determining the terms of the Flexibility Matrix, 

the terms of the stiffness matrix are obtained as shown in 

this work.  

Finally, it is made explicit that the expressions presented 

here for 𝛼𝑖, 𝛼𝑓, 𝜀 and 𝛽𝑓 are valid only for cases of variable 

cross-section along the longitudinal axis of the pillar. In case 

of a constant section, one should resort to the expressions 

widely postulated in technical texts, under penalty of 

mathematical indetermination by these explicit expressions 

for 𝛼, 𝛽, 𝜀 and 𝛽𝑓. 

This contribution emphasizes the achievement of the 

exact stiffness matrix for such a cross-section configuration, 

and the application of such a matrix is performed in the 

calculation of the vibration frequencies of the pillars of a 

bridge with a tray positioned at 100 meters, this relative to 

the base, of the mentioned columns. 

For the first vibration frequency, with the column being 

subdivided into five finite bar elements, an approximation 

of 1.36% is concluded. Such an approximation is excellent, 
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due to the number of finite elements used in the 

discretization of the 100meters high column, the validation 

resulting from modeling in ANSYS. 
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