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Abstract—Since the development of Computed Tomography (CT) in medicine, many applications have 

been emerging among which the use in Non-Destructive Evaluation (NDE) approach has been 

consolidating in recent years for analysis of inner features in a broad range of industrial components. 

More recently, this method has also been applied fordimensional measurements in the metrology field. 

During acquisition stage many artifacts may cause distortions that interfere with the sample edge 

evaluation, thereby generating errors on the surface determination. In such development, high accuracy is 

required for its use in metrology and overall volumetric reconstruction. Scatter radiation is a major 

concern in the image acquisition process, being strongly dependent on the object densities and geometry. A 

combined approach involving genetic algorithm and wavelet shrinkage is proposed for denoising 

application, where 2D radiographic projections are filtered prior to the volumetric reconstruction process. 

The developed algorithm is applied to sample images resulting from tomography procedures that usually 

produce severe artifacts and is evaluated in terms of Peak Signal-to-Noise Ratio (PSNR). The filtering 

technique advanced in this paper generates reconstructed volumes with less noise, accurate edges and 

improved visual perception. 
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I. INTRODUCTION 

The availability of objects built volumetrically through 

Computed Tomography (CT) in industry has brought 

product development and material evaluation to a new 

level, thereby leveraging the comprehension of material 

behavior in fabrication process. Notably, the CT approach 

enhances the knowledge about volumetric spread of 

discontinuities, porous patterns, inclusions, shrinkages, 

voids and flaws. In addition, it can also compare casted 

object with the projected model, aiming at correcting 

discrepancies and improving the casting chain. 

In industrial field, usually the most used system is the 

so-called ConeBeam Computed Tomography (CBCT)[1], 

in which a x-rays tube generates a cone beam that 

penetrates the object projecting an image onto a Digital 

Detector Array (DDA). This technique increases the 

acquisition speed if compared to traditional medical fan 

beam CT, since it can acquire images in a larger area. 

However, reducing the acquisition time benefit has the 

downside of increasing artifacts caused by additional 

scattered radiation. It is well known that the scattered 

radiation creates undesired secondary signals, which are 

responsible for generating spurious components in the CT 

volume. 

A number of different techniques and methods for the 

suppression of scatter-related artifacts have been proposed, 

and can be software based only [2], [3], or a combination 

of hardware and software approaches [4],[5]. The artifacts 

in industrial CBCT turn out to be more severe than those 

found in medical fan beam CT, since the industrial 

components present relatively higher density materials, 

more complex geometries and due to the bigger acquisition 

area, more exposed to scatter radiation. Based on these 

considerations, in this work we propose a combined 

method for filtering these scatter radiations prior to volume 

reconstruction, by using wavelet shrinkage [6]while 
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selecting the wavelet family and its parameters through a 

genetic algorithm [7]for each acquired image. 

 

II. METHODS 

The CBCT acquisition process consists in acquiring 

thousands of 2D radiographic projections. The sample 

object is rotated between the x-rays source and the DDA 

detector. Each image corresponds to a certain angle. After 

the acquisition phase, the acquired images are submitted to 

a reconstruction algorithm which creates the sample digital 

volume. During the acquisition phase, the DDA detector 

not only acquires the useful penetrated x-rays, but also the 

scattering coming from deviated, reflected, diffracted x-

rays passing through the object and around it.These 

scattered x-rays produce false information on the 

reconstructed volume that will degrade image quality, and 

may cause artifacts, therefore yielding false defect 

detection analysis. 

The approach developed in this work employs a 

genetic algorithm to determine the parameters in the noise 

subtraction method by Wavelet Thresholding 

(WT).Donoho and Jonhstone[8] presented a method for 

reconstructing the data of a function contaminated by 

noise. In this approach, a suitable threshold value is chosen 

such that wavelet noise coefficients can be discarded. If 

the chosen threshold value is small, then the estimated 

signal may still contain noise power, and if the chosen 

threshold is too large the signal is over smoothened. 

Finding the optimal threshold value is important in order 

to achieve the best denoised image. 

The wavelet shrinkage function determines how the 

thresholds are applied to the data. There are two basic 

wavelet shrinkage functions: the soft and hard 

thresholding. The hard thresholding approach uses a linear 

function that keeps only the coefficients above a constant 

λ, which is normally chosen based on the noise variance.In 

soft thresholding, on the other hand, the shrinkage 

operation is accomplished by the non-linear equation 

 

𝑡ℎ𝑟(ℎ) = {
0                                     if  |ℎ| ≤ 𝜆
𝑠𝑖𝑔𝑛(ℎ)(|ℎ| − 𝜆)     if  |ℎ| > 𝜆

 

This causes the output to be more smoothened and 

continuous when compared to the hard threshold. A 

number of different approaches can be adopted in order to 

establish the threshold λ[9], [10], [11] and [12].  

 The proposedalgorithm is applied to each acquired 

image prior to the reconstruction stage. The chromosomes 

represent the parameters to be used for wavelet 

decomposition and the coefficient of the wavelet shrinkage 

procedure. The following wavelet families were adopted: 

Haar, Daubechies, Coiflets, Symlets, biorthogonal and 

reverse biorthogonal [13].  

The initial population is chosen randomly, totaling 50 

individuals, which are submitted to a selection process 

known as Universal Stochastic Sampling (USS)[7] . In this 

process, μ equally spaced divisions are used, where μ is 

the number of required selections, in this case the size of 

the population. The cumulative probability of each 

individual being chosen based on their fitness is 

calculated, and copies of these individuals are made 

according to the above calculated probability and 

distributed throughout the divisions, so that individuals 

that have higher fitness are more likely to crossover than 

do the other ones. To perform crossover, a pair of parents 

having a predefined probability Pc is chosen randomly, and 

from the gene numbers (1, 2, 3 and 4) a random point is 

chosen, where the genes of the first parent at the chosen 

point are combined with the last genes of the second parent 

and vice-versa. An example of this procedure is shown in 

Fig. 1.  

 

Fig. 1:  Crossover illustrative example. 

 

After the crossover, a pair of offspring is generated. 

These offspring may suffer mutation based on a 

probability Pm. The individual selected to undergo 

mutation has a randomly chosen gene replaced with a 

possible random value. An example of a mutation can be 

seen in Fig.2. 

 

Fig. 2:  Mutation illustrative example. 

 

Parents and offspring are evaluated according to the 

fitness function. The chosen fitness function is the Peak 

Signal-to-Noise Ratio (PSNR), defined as    
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𝑃𝑆𝑁𝑅 = 10 ∙ log (
𝑆𝑚𝑎𝑥

√𝑀𝑆𝐸
), 

where Smax is the highest signal strength, given by𝑆𝑚𝑎𝑥 =

2𝐵 − 1,where B is the number of bits of each pixel 

representation and MSE is the mean square error between 

the two images having size M × N, that is, 

𝑀𝑆𝐸 =
1

𝑀 ∙ 𝑁
∑ ∑‖𝑆𝑜(𝑖, 𝑘) − 𝑆𝑓(𝑖, 𝑘)‖

2
𝑁−1

𝑘=0

𝑀−1

𝑖=0

, 

where So (i, k) and Sf (i,k) denote the gray level at the 

coordinates i,k regarding the original and filtered images, 

respectively. 

After computing the fitness parameters of all 

individuals, the one having the highest value is compared 

to that of the individual that presents the highest fitness 

value of the previous generation, and the winner is stored. 

The iteration process is repeated with generation 

increments up to the generation limit Gmax= 50. 

 

Fig. 3:  Flow diagram of proposed algorithm. 

 

Using the fittest parameters, the image is decomposed 

by applying Discrete Wavelet Transform (DWT) [14], the 

coefficients are suppressed accordingly, and the filtered 

image is obtained from the inverse DWT. The proposed 

denoising process generates a unique filter for each image, 

aiming at the best PSNR. The 3D reconstruction process 

starts after all images are filtered. Fig. 3 presents the flow 

diagram applied to each projection image. 

 

III. EXPERIMENTAL RESULTS 

In industrial high energy CT different materials and 

geometries make them difficult to create a standard 

template to reproduce noise and artifacts found in typical 

applications. The test specimen employed in this 

experiment is composed of 3 different materials: stainless 

steel, aluminum and polyurethane. These materials have 

very distinct densities and x-ray responses. Moreover, the 

specimen has parts with different geometries and 

thicknesses, namely, (a) stainless-steel screw, essentially 

cylindrical; (b) aluminum and polyurethane sections, with 

smooth transition geometry; and (c)sections with more 

abrupt edges. The scans were carried out by employing a 

CBCT system using a 200 μm DDA of 400 mm x 400mm 

and 4 M pixels, 118 kV, 700 μA, 1440 acquired images, 

0.5 mm CU filter and 82 μm voxel resolution. 

The specimen radiography projection is shown in Fig. 

4, where the different densities and geometries are evident. 

A severe noise artifact can be observed in the CT scan of 

this specimen presented in Fig. 5. This kind of artifact 

creates a false surface line that leads to a wrong evaluation 

of the solid, thereby turning accurate metrology 

impossible. The noise effects can also be observed in 

cross-sectional images (or “slices”). Figures 6(a) and 6(b) 

illustrate the illusion of gain and loss, respectively, of 

material inside the surface line. Also visible in these 

figures is the presence of beam hardening artifacts. 

 

Fig. 4:  Specimen 2D radiography. 
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Fig. 5:  Specimen CBCT volume result. 

 

 

Fig. 6: Slices of the CT scan: (a) Front view slice, with 

additive noise and line surface indicated;(b) Top view 

slice, with loss of material and noise around the screw 

indicated. 

The proposed algorithm was applied to each of the 

1440 images acquired by the CBCT system. After 

reconstruction using the Filtered Back Projection 

algorithm (FBP) [15], the volume generated presented a 

better visual representation, as displayed in Fig. 7. Figures 

8(a) and 8(b) show two slices of the volume in Fig. 7. 

Compared to the original CT slices (Figs. 6(a) and 6(b)), 

the surface lines of the resulting images are substantially 

more accurate, and the gain or loss of material artifacts do 

not appear so intensely. 

 

Fig. 7:  Test specimen CT reconstruction after filtering by 

the proposed algorithm. 

 

 

Fig. 8: Slices views obtained from the proposed algorithm: 

(a) Front view; (b) Top view. 

 

Fig.9 displays the CT volume colored according to the 

dimensional deviation measured between the original and 

the corrected volumes. This analysis shows the areas 

where the proposed algorithm acted to correct the scattered 

noise. Green areas represent no or small amount of 

correction, red areas correspond to additive correction and 

blue areas show subtractive correction. 

 

 

Fig. 9: Comparison between original and filtered volumes 

using the proposed algorithm. 

 

Differences between the volumes obtained with the 

original and filtered CT images can be evaluated by 

comparing the surfaces detected in each volume. Fig. 10 

shows the correction statistics applied to the original 

volume. In this analysis, if both volumes were identical, 

then the resulting histogram of the dimensional deviations 

would present only one green peak at 0. Non-zero values 

at the right-hand side of the zero point indicate that the 

actual volume contains more material than does the 

nominal volume in some regions. On the other hand, non-

zero values lying at the left-hand side show that the actual 

volume has less material than does the nominal volume in 

other regions. As can be observed in Fig. 10, the wavelet 

denoising approach exhibits excellent performance in 

regions where subtractive noise contributed more and 

shows better reduction of the additive noise around the 
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screw head, which considerably improves the volume 

quality. 

 

Fig. 10: Histogram of dimensional deviation between 

original and filtered volumes using the proposed 

algorithm. 

 

To evaluate the efficiency of the proposed algorithm 

when compared to other methods, the original volume was 

also processed with 3 traditional filters, namely, Median 

[16], Adaptive Gauss [17], and Non-Local Means (NLM) 

[18]. These three filters where chosen because they are 

commonly available in commercial CT visualization 

software and are the most used in noise reduction 

applications.  

The original and filtered volumes were superimposed, 

and the dimensional deviation histograms calculated.Fig. 

11 shows the dimensional deviation histogramfor a 3x3 

median filter. There was some noise reduction, but the 

effect was of small amplitude. Fig. 12 displays the 

dimensional deviation histogram between the original and 

filtered volumes using adaptive gauss filter. This filtering 

technique produced a substantial material reduction, 

thereby resulting in an increase of the original material 

loss, yielding an undesired opposite effect. It also removed 

material from the polyurethane part. The histogram profile 

shown in Fig. 13 represents the dimensional deviation 

histogram after applying the NLM filter. The form is 

similar to that of the median filter, but with larger material 

reduction. 

 

 

Fig. 11: Histogram of dimensional deviation between 

original and filtered volumes using Median filter. 

 

 

 

Fig. 12: Histogram of dimensional deviation between 

original and filtered volumes using Adaptive Gauss filter. 

 

From Figs. 10 to 13, it can be observed that the 

proposed algorithm showed not only a better performance 

in correcting both additive and subtractive noise, but also 

created a more accurate volume with respect to the original 

object.  

 

Fig. 13: Histogram of dimensional deviation between 

original and filtered volumes using NLM filter. 

 

A second dataset was applied in order to analyze the 

evolution of the noise reduction during an iterative 
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process, where the dataset, after a generation run,was used 

as input of sequential generation runs. The sample was an 

iron casting that produced severe scattering due to its high 

density and complex geometry. Different from the test 

specimen, this sample is made of a homogenous material 

with thicker and denser walls. 

Fig. 14 presents the original volume and Fig. 15 shows 

the evolution after 4 runs. The visual quality improvement 

can be seen specially in the center of the sample, where in 

the original volume seemed almost closed. After some 

runs it is possible to observe the air between the two sides 

of the sample. 

 

Fig. 14: Iron casting original reconstructed volume. 

 

 

Fig. 15: Evolution of noise reduction. 

 

This same sample was scanned again using a CBCT 

with the “scatter correct” technology presented by Oliver 

Brunke[4], which employs a metal grid to measure the 

scattered radiation during scanning. The measured 

radiation is, then, subtracted from a second scan without 

the grid. The result is a better volume with reduced noise 

power.For each run of the proposed algorithm the gray 

value histograms of the volumes were computed and then 

compared to the gray value histogram of the second scan 

with “scatter correct” CBCT. The result of all histograms 

can be seen in Fig. 16. 

The left peak of each histogram represents the air in the 

3D volume. For an ideal noise free volume, there should 

be, in addition to air, only a second peak representing the 

iron and between them a valley, with no other gray level. 

Analyzing the histograms, the “scatter correct” one shows 

a deeper valley between air and iron, which represents less 

noise and a better visual perception and a more accurate 

surface line definition. The original histogram does not 

show the iron peak nor a valley separation. The first and 

second runs result in small improvements with the air peak 

moving to the left-hand side of the histogram, but the third 

run made an expressive improvement by moving further 

the air peak and starting to present a separation valley.  

 

Fig. 16: Gray level histograms of the iron casting. 

 

IV. CONCLUSION AND DISCUSSIONS 

 The wavelet denoising approach parametrized by 

genetic algorithm generates a customized filter that adapts 

for each radiographic projection noise profile. A test object 

created to increase scattered noise by its geometry and 

different densities was scanned and evaluated by the 

proposed algorithm. The final visual quality was strongly 

improved, and the noise power was decreased to such a 

level that destructive interference was substantially 

reduced.Not only the overall quality of the reconstructed 

volume was improved, but also the edge accuracy and 

surface line determination were significantly enhanced 

when compared to the original scan. 

When compared to traditional smoothing filtering 

techniques, the proposed algorithm presented better results 

by reducing material where there was additive noise and 

regenerating material where there was subtractive noise. 

This behavior originates from the optimized filters created 

for each projected image before reconstruction. 
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The denoising behavior during multiple runs has a 

stochastic nature due to the GA part of the algorithm, 

where small improvements can be made or significant 

noise reduction at different stages can be observed. 

Although there was an important improvement in reducing 

noise, some noise power remained around the screw head 

in the test specimen and in some regions of the iron casting 

sample. 

Different datasets where submitted to the proposed 

algorithm. The objects scanned differ in shape, material, 

densities, and noise level. In all studies some amount of 

noise power reduction and material loss correction were 

achieved, thereby improving visual perception of the 

volumes, even in cases where there was just a small 

amount of noise power in the original volume. 

During the development of this project, it was also 

evaluated whether the proposed algorithm would modify 

the edges in such a way that accurate features 

measurements would become unfeasible. Scanning objects 

with known measured features proved that the use of the 

algorithm did not induce deviation on the expected 

detected edges and surface lines.   
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