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Abstract: Renewable energy sources and energy storage 

systems present specific challenges to the traditional 

optimal power flow (OPF) paradigm. First, storage devices 

require the OPF to model charge/discharge dynamics and 

the supply of generated power at a later time. Second, 

renewable energy sources necessitate that the OPF solution 

accounts for the control of conventional power generators 

in response to errors of renewable power forecast, which 

are significantly larger than the traditional load forecast 

errors. This paper presents a sparse formulation and 

solution for the affinely adjustable robust counterpart 

(AARC) of the multi-period OPF problem. The AARC aims 

at operating a storage portfolio via receding horizon 

control; it computes the optimal base-point conventional 

generation and storage schedule for the forecasted load and 

renewable generation, together with the constrained 

participation factors that dictate how conventional 

generation and storage will adjust to maintain feasible 

operation whenever the renewables deviate from their 

forecast. The approach is demonstrated on standard IEEE 

networks dispatched over a 24-h horizon with interval 

forecasted wind power, and the feasibility of operation 

under interval uncertainty is validated via Monte Carlo 

analysis. The computational performance of the proposed 

approach is compared with a conventional implementation 

of the AARC that employs successive constraint 

enforcement.  

Index Terms—Energy storage, integer linear 

programming, optimal power flow, optimization methods. 

I. INTRODUCTION 

THE single-period optimal power flow (OPF) models the 

network constraints in the dispatching solution and plays an 

important role in the generation control function of an 

energy management system [1], [2]. The inter-temporal 

constraints comprise the generation ramp-rate bounds 

together with the generation minimum-up/minimum-down 

time limitations. The common practice is to include the 

inter-temporal constraints in the unit commitment problem 

that schedules the hours during which the generating units 

must be ready to run [3], with the generation dispatch 

subsequently computed by solving a static OPF problem for 

each period on its own. However, the advent of energy 

storage systems (ESS) such as batteries, flywheels, and 

compressed air makes generation dispatching incompatible 

with the current single-period OPF practice; this is due to 

the operation of storage being strongly coupled over the 

time periods [4]. A viable solution in this case is receding 

horizon control (RHC), in which a multi-period OPF is 

solved over a finite horizon, the fist step of the solution is 

executed, and the process is repeated for the next time step 

with the most recently available information [5]. In fact, 

multi-period OPF has been already employed for solving 

look-ahead dispatch problems for generation with ramp-rate 

constraints [6]. ESS are normally deployed in networks 

having renewable energy sources (RES), where the ESS 

capacity to transfer power over time proves to be 

invaluable. The variability of generation from RES requires 

specific modeling to ensure network balance at each time 

step of the multi-period OPF, and maintaining secure 

operation remains an active research problem. The OPF 

with storage was formulated as a finite-horizon optimal 

control problem in [7], where an explicit optimal solution 

for the charging pattern is found in the case of a single 

generator connected to a single load by a line of infinite 

capacity. For the general case with several generators and 

loads, the formulation is extended to a multi-period OPF 

that can employ either a DC [7] or an AC [8], [9] network 

model. With a DC network model and convex cost curves, 

the problem can be solved using convex optimization 

software. The AC network model leads to a non-convex 

optimization problem, where guarantees on the performance 

of the solver and the quality of the solution generally cannot 

be given. However, recent findings in [10] show that the 

single-period OPF with quadratic cost functions admits a 
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convex semi definite programming (SDP) relaxation which 

will give the correct answer in many practical instances; this 

relaxation has been extended in [11] and [12] to the case of 

multi-period OPF with ESS, though computational 

performance on large systems remains a bottleneck. Ref. 

[13] studied the relation between locational marginal prices 

and storage dynamics in the context of the multi-period 

SDP-OPF, and gave conditions under which simultaneous 

charging and discharging will not occur. In other multi-

period OPF applications, simultaneous charging and 

discharging was avoided by defining a predetermined cycle 

of charge/discharge per day [14]; further flexibility in 

scheduling the storage operation comes at the expense of 

solving a mixed-integer nonlinear programming formulation 

[15], [16], which is an NP-hard problem. The formulations 

[7]–[16] can seamlessly account for renewable generation 

as a deterministic quantity, essentially by treating it as 

negative load. The deterministic assumption implies an 

accurate short-term forecast over the dispatching horizon; 

while this is commonly accepted for loads, it is far less 

justified for RES [17]. To extenuate the intermittency 

effects of wind power generation, [18] proposed scheduling 

fast reserves via a risk-mitigated OPF that uses chance 

constraints with a Gaussian model for the prediction errors. 

In current operational procedures, optimal power flow 

dispatching is employed to compute the base-point 

generation, and participation factors are used to adjust the 

conventional generation as load varies between base-point 

optimizations [19], [20]; the same principle applies for 

handling RES variability [21]. The calculation of 

participation factors that guarantee security before the next 

optimization has been proposed in [20] and further 

improved in [2]. Typically computed participation factors 

with base-points from a deterministic OPF solution have 

proved to work well under load fluctuations [1], [2], [19], 

[20], but can give rise to significant line overloads under the 

larger wind power variations. Reference [22] proposed 

computing the participationfactors for Gaussian wind power 

fluctuations by solving a conic reformulation of the chance 

constrained problem. The practical application of stochastic 

optimization requires accurate statistical models that may 

not be easily available [5], and this has motivated the study 

of problems related to data errors in chance-constrained 

approaches [22]. From an implementation point of view, the 

methods in [1], [2], [20], and [22] for computing the 

generation participation make use of a single-period OPF 

formulation and are therefore not directly applicable for 

handling storage charge/discharge dynamics. This paper 

proposes an affinely adjustable robust counterpart (AARC) 

of the multi-period OPF problem; with convex piecewise 

linear cost curves and a DC network model, the AARC is a 

mixed-integer linear program which allows scheduling 

conventional generation/ESS and computing constrained 

participation factors that remain valid as the renewable 

generation varies over its uncertainty interval. The binary 

variables in the AARC preclude simultaneous 

charging/discharging of ESS, and the participation factors 

command the conventional generation and ESS adjustments 

for maintaining a feasible multi-period OPF solution as the 

RES output takes any value from a prescribed uncertainty 

set. In fact, the literature on short-term wind prediction 

presents confidence intervals of the predicted values [17] 

and [23], [24] recently propose a methodology for direct 

interval forecasting; the confidence or forecast intervals are 

synonymous with the intervals of uncertainty in the context 

of robust optimization [25] and serve as motivation for this 

work. Additionally, the AARC conforms with the automatic 

generation control functionality under the current power 

engineering practice [19]. The proposed AARC formulation 

also maintains sparsity of the multi-period OPF model; this 

is shown to be advantageous for computational performance 

and results in significantly reduced storage requirements. 

Unlike [26], it employs a compact robust reformulation of 

the generator dispatch and ramp-rate constraints, and 

accounts for storage devices with participation factors that 

dictate the charge/discharge power adjustment when the 

uncertainty is revealed. The rest of this paper is organized 

as follows. Section II reviews recent developments in two-

stage robust optimization and Section III presents the multi-

period OPF formulation with RES and ESS. Section IV 

introduces the proposed sparse AARC, with the full-set 

power flow equations and a compact representation of 

robust generator and storage limitations; the compact 

reformulations in Section IV-A and IV-B do not make use 

of the general AARC format in [25]. Section V presents 

numerical results that are validated via Monte Carlo 

simulation; additionally, the computational performance is 

contrasted with the conventional AARC [25], which 

requires the use of the reduced-set or non-sparse power flow 

formulation [26]. The paper is concluded in Section VI. 

Practical use of software for multi-stage real-time dispatch 

is already adopted by the PJM Interconnection [27], 

implying that the ideas for real-time dispatch reported 

herein can be of value for system operators.  

II. ROBUST FORMULATIONS 

https://dx.doi.org/10.22161/ijaers/nctet.2017.eee.10
http://www.ijaers.com/


Trends in Engineering and Technology (NCTET-2K17) 

International Journal of Advanced Engineering Research and Science (IJAERS)                                                Special Issue-5 

https://dx.doi.org/10.22161/ijaers/nctet.2017.eee.10                                                                ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                      Page |58  
 

 

Robust optimization has emerged as a powerful 

method for optimization under uncertainty. In particular, 

two-stage robust optimization with complete recourse has 

been recently proposed for solving power system 

scheduling and unit commitment problems [28]–[31]. The 

two-stage decision environment distinguishes between the 

here-and-now (nonadjustable) variables that must be 

determined before the realization of the uncertainty, and the 

wait-and-see (adjustable) variables that adjust themselves 

once the uncertainty is revealed; in this context, complete 

recourse implies that the second-stage variables are free to 

adjust within their feasible operating range so as to restore 

feasibility. Two-stage robust optimization with complete 

recourse is in most cases NP-hard [32], and exactly solving 

the second-stage problem with general polyhedral 

uncertainty sets remains computationally intensive. Despite 

the usefulness of the two-stage robust solution in multi-

period optimization problems, the formulation inherently 

assumes that the uncertainty is simultaneously revealed in 

all intervals; the solution to multistage robust optimization 

problems remains a subject for research. A finely adjustable 

robust optimization offers a tractable implementation for 

two-stage robust optimization problems; this comes at the 

expense of restricting the second-stage variables to adjust as 

affine functions of the uncertainty [25], [32]. The solution 

of the AARC is expected to be suboptimal relative to the 

two-stage robust solution with complete recourse. However, 

research in [33] and [34] suggests that in some cases the 

affinely adjustable solution is indeed optimal, and 

experience with power system dispatch problems is 

encouraging [26]. Recent research on generalized decision 

rules [35] aims to reduce sub-optimality as compared to the 

robust solution via affine policies; however, its practical 

applicability to multistage power system optimization 

problems is yet to be determined 

III. MULTI-PERIOD OPTIMAL POWER 

FLOW PROBLEM 

Consider a power network n having nodes 

with demand( PDi(t)), conventional generation ( 

PGi(t))   and RES ( PRi(t)) connected to them 

storage is defined inj accordance with the 

generation convention i.e is the storage power is 

positive (( Psi(t)=( Pd
si(t)) during discharge 

periods and negative (( Psi(t)=-( Pd
si(t)) during  

charge periods .The index I runs from 1 to n with 

the provision that any quantity ( such as storage 

power and conventional \renewable generation ) 

that is not associated with node i is set to zero 

𝑃𝐺𝑖(𝑡) = 0, 𝑖∄ 𝐺; 𝑃𝑅𝑖(𝑡) = 0, 𝑖∄𝑅; 𝑃𝑆𝑖 (𝑡) = 0, 𝑖∄𝑠(1) 

The multi-period OPF computes the base-point generation 

values and the schedule of the storage portfolio; its 

objective is minimizing the cost of operating conventional 

generation over the dispatch horizon(t=1….,T) , given the 

demand and the renewable power forecast [12]: 

∑ ∑ ∑ (𝑐𝑖𝑘𝑃𝐺𝑖𝑘(𝑡) + 𝐶𝑖𝑜)∆𝑡
𝑁𝑖
𝐾=1𝑖∈𝐺

𝑇
𝑡=1 (2) 

The physical and technical constraints that govern the 

multiperiodOPF problem are listed below: 

• Generator dispatch and ramp-rate limits 

𝑃𝐺𝑖 = 𝑃𝐺𝑖
𝑚𝑖𝑛 + ∑ 𝑃𝐺𝑖𝑘(𝑡), 𝑖𝜖𝐺, 𝑡 = 1 … … . , 𝑇

𝑁𝑖
𝑘=1 (3) 

0 ≤ 𝑃𝐺𝑖(𝑡) ≤ 𝑃𝐺𝑖
(𝐾)

− 𝑃𝐺𝑖
(𝐾−1)

 𝑖𝜖𝐺, 𝐾 = 1, … … 𝑁𝑖 , 𝑡 =

1, … . . 𝑇(4) 

−𝑅𝑅𝑖
𝑚𝑎𝑥∆𝑡 ≤ 𝑃𝐺𝑖(𝑡) − 𝑃𝐺𝑖(𝑡) ≤ 𝑅𝑅𝑖

𝑚𝑎𝑥𝑖𝜖 𝐺, 𝑡, … . , 𝑇(5) 

• DC powerflow equations and line flow limits 

𝑃𝐺𝑖(𝑡) + 𝑃𝑠𝑖
𝑑(𝑡) − 𝑃𝑠𝑖

𝐶 (𝑡) ∑ 𝐵𝑖𝑗𝜃𝑗(𝑡) = 𝑃𝐷𝑖(𝑡) −𝑛
𝑗=1

𝑃𝑅𝑖(𝑡), 𝜃1(𝑡) = 0, 𝑖 = 1, … . . 𝑛, 𝑡 = 1, … . . ,(6) 

Pij = bij(θi(t) − θj(t) ≤ pij
max, jϵ𝛀 (𝐢), 𝐢 = 𝟏, … . . 𝐧, 𝐭 =

𝟏, … … 𝐓(7) 

• Storage dynamics, capacity, and charge/discharge 

powerlimits 

𝐸𝑖(𝑡) − 𝐸𝑖(𝑡 − 1) = (𝑛𝑐𝑃𝑠𝑖
𝑐 (𝑡) −

1

𝑛𝑑
𝑃𝑠𝑖

𝑑(𝑡)) ∆𝑡, 𝑖 ∈ 𝑆, 𝑡 = 1, … . . 𝑇               

 0≤ 𝑃𝑠𝑖
𝑐 (𝑡) ≤ 𝑃𝑆𝑖

𝑐(max)
𝛽𝑖(𝑡), 0 ≤ 𝑃𝑆𝑖

(𝑑)
(𝑡) ≤ 𝑃𝑆𝑖

𝑑(max)
(1 − 𝛽𝑖(𝑡))(8) 

𝛽𝑖(𝑡)𝜖{0,1}, 𝑖𝜖𝑠, 𝑡 = 1, … … 𝑇(9) 

𝐸𝑖
𝑚𝑖𝑛 ≤ 𝐸𝑖(𝑡) ≤ 𝐸𝑖

𝑚𝑎𝑥, 𝐼𝜖𝑆, 𝑡 = 1, … … 𝑇(10) 

𝐸𝑖(𝑇) = 𝐸𝑖𝑓, 𝑖𝜖𝑆 (11) 

Equation (3) expresses the conventional generation powerin 

function of its interval components (PGik(t)), where each is 

bounded by the limits in (4); the corresponding piecewise 

linear generator cost curve in (2) is assumed to be 
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convex(Fig. 1), in which case separable programming 

guarantees the validity of the piecewise linear formulation 

[36]. Equation (5) enforces the generation ramping limits 

that constrain the maximum allowable change between two 

consecutive intervals. The power network is modeled by a 

DC power flow (6)in each time interval, and the branch 

power flow constraints(7) are expressed in terms of the 

nodal angles; the power flow PIJ
MAX limitis enforced at each 

end of the branch, which is equivalent to requiring the 

power flow along branch I,J to be limited between flow 

PIJ
MAX,- PIJ

MAXThe storage dynamics are given by (8); (9) 

sets the storage charge/discharge limits and prevents 

simultaneous charging and discharging, which is unrealistic 

for most storage technologies. Equation (10) captures the 

minimum and maximum capacity limits for storage; (11) is 

optionally used for setting the final value of the stored 

energy to a pre-specified value, which is commonly chosen 

equal to the initial value .EI
(0)The problem given by (2)–(11) 

is a sparse mixed-integer linear program, where the binary 

variables ensure that storage operates exclusively either in 

the charge or discharge mode. In this respect, [13] showed 

that simultaneous charging and discharging will not occur at 

a bus if the locational marginal price (LMP) at this bus is 

strictly positive. Congested power networks could cause 

negative LMPs at some buses even if 

 

Fig. 1. Convex generation cost function. 

 

all offer curves are positive, in which case the operational 

cost will be reduced if consumers draw more power from 

the bus with the negative LMP; this is also known to appear 

in the classical transportation problem, where it is named 

the more-for-less-paradox [37]. Consider an OPF solution 

whereas certain bus has a negative LMP; if a storage device 

(with a round trip efficiency less than 100%) is installed at 

this bus, then simultaneous charging and discharging will 

result in a more economical solution as it effectively 

increases the demand through dissipating power in the 

device. This is guaranteed not to happen in the above 

formulation due to the binary variables, where 

computational experience shows that the mixed-integer 

linear programming (MILP) formulation is not very taxing 

in terms of execution time because the majority of storage is 

naturally scheduled in one mode [9]. 

IV AARC of the Multi-Period OPF Problem 

The AARC of the multi-period OPF is the main 

computational engine behind the RHC implementation, 

where theAARC solution is executed for the first time step 

and recomputed at the next step with updated forecast 

estimates and confidence intervals; this aims at maintaining 

a non-empty feasible region when the subsequent intervals 

are optimized. The objective of the AARC is to minimize 

the base-point generation cost over the dispatch horizon: 

∑ ∑ ∑ (𝐶𝑖𝑘𝑃𝐺𝑖𝑘(𝑡) + 𝐶𝑖0)∆𝑡
𝑁𝑖
𝑘=1𝑖∈𝐺

𝑇
𝑡=1 (12) 

subject to the following constraints: 

• Generator dispatch and ramp-rate limits. 

• Storage dynamics, capacity, and charge/discharge power 

limits. 

• DC power flow equations and line flow limits. 

• Participation factor constraints. 

The above problem is a sparse mixed-integer linear program 

that is solvable using available commercial software 

packages [38]; its solution gives the base-point generation, 

the storage schedule, and constrained participation factors 

for both conventional generation and ESS over the study 

horizon. Alternatively, the generation participation factors 

can be set to fixed values, following for instance the 

standard in [19]. Under some additional assumptions, the 

expected cost of re-dispatch can be used as an alternative 

objective function in terms of and; typical assumptions 

require the availability of the first and second moments of 

together with the use of quadratic c cost curves [26]. 

A successive constraint enforcement scheme for 

the power flow limits (49), (50) is employed to improve the 

computational performance of the solution. The scheme 

starts by solving sub-problem that does not include any 

power flow limit constraints. This is followed by checking 

for violated power flow limit constraints, which are 

subsequently added to the sub problem. The iterative 

constraint enforcement process is repeated until all power 

flow limit constraints are satisfied. 

 

V. MALAB RESULTS 

 

The multi period OPF was programmed in 

MATLAB. The simulations were carried out on a 
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WINDOWS having a 2.7-GHz quad-core Intel Core i5 

processor with 4-MB L3 cache and 8 GB of RAM. The 

scheduling results are reported on the IEEE 14-bus 

networks whose original data sets are given with the 

distribution files of MATPOWER and modified according 

to [20]. 

The convex quadratic generation cost curves were 

replaced with a three-segment linear approximation, where 

each segment approximates the generator quadratic cost 

curve over one third of its dispatch range. Each network 

was simulated over a period of 24 h with the time 

discredited into 30-min intervals [5], i.e.  The half-hourly 

bus load profile was obtained by scaling the daily peak 

power at each bus (as given in the data files [21]) using the 

percentage values shown in Fig. 2. Storage was assumed to 

be installed at each bus that does not have conventional 

generation, with the following parameters [11], [12]: 

storage capacity is 32MWh and the maximum 

charge/discharge power limit is 8 MW. The initial and final 

storage energy levels were set to 16 MWh.  

 
Fig. 2. Half-hourly bus load in percent of the bus load daily 

peak. 

Table 1 

Load flow of IEEE 14 bus without RES 

How many                   No. of               P (MW)         Q (MVAr) 

--------------------    ---------------      ------------        ------------- 

Buses                              14      

Total Gen Capacity                                772.4         -52.0 to 148.0 

Generators                        5      

On-line Capacity                                    772.4         -52.0 to 148.0 

Committed Gens              5      

Generation (actual)                                   268.3              67.6 

Loads                               11    

Load                                                           259.0              73.5 

Fixed                               11        

Fixed                                                          259.0              73.5 

Branches                          20      

Losses (I^2 * Z)                                         9.29             39.16 

 

 

Table 2 

Load flow of IEEE 14 bus with  RES 

How many                   No. of               P (MW)         Q (MVAr) 

--------------------    ---------------      ------------        ------------- 

Buses                              14      

Total Gen Capacity                                772.4         -52.0 to 148.0 

Generators                        5      

On-line Capacity                                    772.4         -52.0 to 148.0 

Committed Gens              5      

Generation (actual)                                   268.3               67.6 

Loads                               11    

Load                                                           259.0              73.5 

Fixed                               11        

Fixed                                                          259.0              73.5 

Branches                          20      

Losses (I^2 * Z)                                         7.430              31.33 

 

 

VI. CONCLUSION 
 

This paper described a novel sparse formulation 

for theaffinely adjustable robust counterpart of the multi-

period OPF problem with RES and storage. The proposed 

formulation is an MILP problem that models the storage 

device dynamics such that simultaneous charging and 

discharging does not occur, and includes adjustable 

variables that restore solution feasibility after the 

uncertainty associated with the renewable power forecast is 

revealed. Unlike the conventional AARC formulation that 

employs a reduced-set power flow, the proposedAARC 

maintains the sparse network equations and shows 

significant computational advantages on larger networks 

with small time resolution; this is particularly important 

because the multi-period OPF is intended for cyclical 

execution in the implementation of receding horizon 

control. The AARC can handle the generation and storage 

participation factors either as optimizable variables or as 

fixed parameters. However, the Matlab tests demonstrate 

that optimizing the generation participation factors is 

superior to the use of the classical standard values in terms. 
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