Statistics

    Map

Twitter

Evaluation of Wood Plastic Composites Produced from Mahogany and Teak
( Vol-4,Issue-12,December 2017 )
Author(s):

Olufemi O. Adefisan, Armando G. McDonald

Keywords:

Flexural properties, Khaya ivorensis, Tectona grandis, Water absorption, Wood plastic composites.

Abstract:

Wood plastic composites (WPC) were made from Nigerian mahogany (Khaya ivorensis) and teak (Tectona grandis) wood particles and high density polyethylene and evaluated. The WPC were tested for flexural properties, water sorption, melt flow and thermal properties. The results obtained indicated that composites possessed adequate flexural strength (25.6 - 43.0 MPa) and were dimensionally stable (water absorption 1.3 – 28.0%; thickness swell 0.4 -5.0%). Melt flow and viscosities at 190oC were between 1.31 and 1.6 g/10 min and 46.5 and 57.1 kPa/s, respectively. Particle size (<2 mm versus <0.5 mm) significantly affected the properties of the WPC. Mahogany based composites had higher strength but lower sorption properties in comparison with those of Teak. The densities of the composites seemed to influence properties of the plastic composites.

ijaers doi crossref DOI:

10.22161/ijaers.4.12.5

Paper Statistics:
  • Total View : 104
  • Downloads : 12
  • Page No: 027-032
Cite this Article:
Show All (MLA | APA | Chicago | Harvard | IEEE | Bibtex)
Share:
References:

[1] A.A. Ogunwusi (2014). Wood waste generation in the forest industry in Nigeria and prospects for its industrial utilization. Civil and Environmental Research (ISSN: 2224-5790 (P) | 2225-0514 (O)), 6 (9), 62-69. http://www.iiste.org/Journals/index.php/CER/article/view/15450/15858
[2] E.B. Ogunbode, F.O. Fabunmi, S.M. Ibrahim, I.O. Jimoh, O.O. Idowu (2013). Management of sawmill wastes in Nigeria: Case study of Minna, Niger State. Greener Journal of Science, Engineering and Technology Research (ISSN: 2276-7835 (O)). 3(2), 34-41. DOI: 10.15580/GJSETR/012413407
[3] K. Oluoti, G. Megwai, A. Petterson, T. Richards (2014). Nigerian wood waste: A dependable and renewable fuel option for power production. World Journal of Engineering and Technology (ISSN: 2331-4222 (P) | 2331-4249 (O)). 2, 234-248. http://dx.doi.org/10.4236/wjet.2014.23025
[4] P. Kuo, S. Wang, J. Chen, H. Hsueh, M. Tsai (2009). Effects of material compositions on the mechanical properties of wood–plastic composites manufactured by injection molding. Materials and Design (ISSN: 0261-3069). 30, 3489–3496. doi:10.1016/j.matdes.2009.03.012
[5] J.S. Fabiyi, A.G. McDonald (2010). Effect of wood species on property and weathering performance of wood plastic composites. Composites Part A (ISSN: 1359-835X). 41(10), 1434–1440. doi:10.1016/j.compositesa.2010.06.004
[6] Y.T. Lim, O.O. Park (2001). Phase morphology and rheological behaviour of polymer / layered silicate nanocomposites. Rheologia Acta (ISSN: 0035-4511 (P) | 1435-1528 (O)). 40, 220–229. https://doi.org/10.1007/s003970000126
[7] L.W. Gallagher, A.G. McDonald (2013). The effect of micron sized wood fibers in wood plastic composites. Maderas: Ciencia y Tecnologia (ISSN: 0717-3644 (P) | 0718-221X (O)). 15(3), 357-374. http://dx.doi.org/10.4067/S0718-221X2013005000028
[8] K.S. Aina, E.O. Osuntuyi, A.S. Aruwajoye (2013). Comparative studies on physico-mechanical properties of wood plastic composites produced from three indigenous wood species. International Journal of Science and Research (ISSN: 2319-7064 (O)). 2(8), 226-230.
https://www.ijsr.net/archive/v2i8/MDIwMTMxNzg=.pdf
[9] K.S. Aina, O.A. Oluyege, J.A. Fuwape (2016). Effects of indigenous wood Species and plastic/wood ratio on physico-mechanical properties of wood plastic composites. International Journal of Scientific Research in Agricultural Sciences (ISSN: 2345-6795 (O)). 3(1), 11-17. http://dx.doi.org/10.12983/ijsras-2016-p0011-0017
[10] D.N. Izekor, M.E. Mordi (2014). Dimensional stability and strength properties of wood plastic composites produced from sawdust of Cordia alliodora (Ruiz and Pav.). Journal of Applied and Natural Science (ISSN: 0974-9411 (P) | 2231-5209 (O)). 6(2), 338-343. http://jans.ansfoundation.org/previous-issues/volume-6-year-2014-issue-2#TOC-Dimensional-stability-and-strength-properties-of-wood-plastic-composites-produced-from-sawdust-of-Cordia-alliodora-Ruiz-and-Pav.-
[11] H-S. Kim, S. Kim, H-J. Kim, H-S. Yang (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta (ISSN: 0040-6031 (O)). 451(1-2), 181-189.
doi:10.1016/j.tca.2006.09.013
[12] H. Demir, U. Atikler, D. Balkose, F. Tihminlioglu (2006). The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene-luffa fiber composites. Composites Part A (ISSN: 1359-835X (O)). 37(3): 447-456. https://doi.org/10.1016/j.compositesa.2005.05.036
[13] D.J. Gardner, Y. Han, L. Wang (2015). Wood-plastic composite technology. Current Forestry Reports (ISSN: 2198-6436 (O)). 1, 139-150. https://doi.org/10.1007/s40725-015-0016-6
[14] L. Wei, A.G. McDonald, C. Freitag, J.J. Morrell (2013). Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polymer Degradation and Stability (ISSN: 0141-3910 (P)). 98, 1348-1361. http://dx.doi.org/10.1016/j.polymdegradstab.2013.03.027
[15] ASTM International (ASTM D 1108-96). (2006). Standard test method for dichloromethane solubles in wood. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 04(01), 187-188. West Conshohocken, PA.
[16] ASTM International (ASTM D 1106-96). 2006. Standard test method for acid-insoluble lignin in wood. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 04(01), 183-184. West Conshohocken, PA.
[17] ASTM international (ASTM D 570-98) 2008. Standard test method for water absorption of plastics. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 08(01)35-37. West Conshohocken, PA
[18] J.S. Fabiyi, A.G. McDonald, J.J. Morrell, C. Freitag (2011). Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Composites Part A (ISSN: 1359-835X (O)). 42(5), 501–510. https://doi.org/10.1016/j.compositesa.2011.01.009
[19] ASTM international (ASTM D 790-07). 2008. Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 08(01), 151- 161. West Conshohocken, PA.
[20] ASTM international (ASTM D 1238-04c). 2008. Standard test method for melt flow rates of thermoplastics by extrusion plastometer. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 08(01), 277-290. West Conshohocken, PA.
[21] C.M. Clemons, N.M. Stark (2009). Feasibility of using saltcedar as a filler in injection-molded polyethylene composites. Wood and Fiber Science (ISSN: 0735-6161). 41(1), 2–12.
[22] A.O. Balogun, O.A. Lasode, A.G. McDonald (2014). Devolatilisation kinetics and pyrolytic analyses of Tectona grandis (teak). Bioresource Technology (ISSN: 0960-8524 (O)). 156, 57-62. http://dx.doi.org/10.1016/j.biortech.2014.01.007
[23] H.P. San, L.A. Nee, H.C. Meng (2008). Physical and mechanical properties of injection moulded wood plastic composites boards. ARPN Journal of Engineering and Applied Sciences (ISSN: 1819-6608 (O)). 3(5), 13-19.
http://www.arpnjournals.com/jeas/research_papers/rp_2008/jeas_1008_124.pdf
[24] S. Migneault, A. Kouba, F. Erchiqui, A. Chaala, K. Englund, C. Krause, M. Wolcott (2008). Effect of fibre length on processing and properties of extruded wood-fibre/HPDE composites. Journal of Applied Polymer Science (ISSN: 1097-4628 (O)). 110, 1085-1092. DOI: 10.1002/app.28720
[25] S.V. Rangaraj, L.V. Smith (2000). Effects of moisture on the durability of a wood thermoplastic composite. Journal of Thermoplastic Composites Material (ISSN: 0892-7057 (P) | 1530-7980 (O)). 13(2), 140-161. http://journals.sagepub.com/doi/pdf/10.1177/089270570001300204
[26] Poletto, M. 2016. Effect of extractive content on the thermal stability of two wood species from Brazil. Maderas: Ciencia y technologia (ISSN: 0717-3644 (P) | 0718-221X (O)). 18(3), 435-442.