Statistics

    Map

Twitter

Impact of Deficit Irrigation (DI) and Root-Zone Drying Irrigation Technique (PRD) under Different Nitrogen Rates on Radiation Use Efficiency for Potato (Solanum Tuberosum L.) in Semi-arid Conditions (II)
( Vol-5,Issue-2,February 2018 )
Author(s):

Mourad. Rezig, Béchir. Ben Nouna, Sabri Kanzari, Haroun Ben Ammar, Rahma Gatri

Keywords:

Deficit Irrigation, Root-Zone Drying Irrigation, Leaf Area Index, Photosynthetically Active Radiation Absorbed, Radiation Use Efficiency.

Abstract:

The study was carried out at the Technical Center of Potato and Artichoke CTPTA located in the lower valley of Medjerda river of Tunisia during the season of 2017. The purpose was to estimate the impact of deficit irrigation (DI) and the root-zone drying irrigation technique (PRD) under different nitrogen rates on photo synthetically active radiation absorbed and radiation use efficiency for Potato (Solanum Tuberosum L. VS. Spunta). Three water treatments (T1= 100% ETC, T2 = DI = 75% ETC and T3 = PRD50) and three nitrogen rates (F1 = N150: 150 kg N ha-1, F2 = N75: 75kg N ha-1, F3 = N0: 0kg N ha-1) were applied since the tuber initiation (55 days after planting) to maturity (100 days after planting). The deficit irrigation T2 has no effect on PARabs. Besides, the PRD50 has led to a reduction in PARabs. This decrease compare to T1 was equal to (8.9; 9.9 and 7.9%) respectively for the three treatments (F1; F2 and F3). The nitrogen deficit affects negatively the PARabs. An improvement of 13.2%, 11.2% and 12.2% of the F1 compared to the F3, respectively for the three water treatments (T1, T2 and T3). The T2 has no effect on RUE TDM. Conversely, the PRD50 has led to a reduction in RUE TDM. This decline referee against T1 was equal to (12.7; 17.4 and 21.5%) respectively for the three treatments (F1; F2 and F3). For RUEGY statistical analysis showed significant (P < 0.05) difference between the three irrigation treatments (T0, T1 and T2) for the three nitrogen treatments (F1; F2 and F3). The T2 and the PRD50 has led to a reduction in RUE GY. This decrease judge against T1 respectively for the two treatments (F2 and F3) was equal to (14.9 and 21.5%) and (19.6 and 31.2%).

ijaers doi crossref DOI:

10.22161/ijaers.5.2.3

Paper Statistics:
  • Total View : 136
  • Downloads : 29
  • Page No: 020-031
Cite this Article:
MLA
Mourad. Rezig et al ."Impact of Deficit Irrigation (DI) and Root-Zone Drying Irrigation Technique (PRD) under Different Nitrogen Rates on Radiation Use Efficiency for Potato (Solanum Tuberosum L.) in Semi-arid Conditions (II)". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 2, 2018, pp.020-031 AI Publications, doi:10.22161/ijaers.5.2.3
APA
Mourad. Rezig, Béchir. Ben Nouna, Sabri Kanzari, Haroun Ben Ammar, Rahma Gatri(2018).Impact of Deficit Irrigation (DI) and Root-Zone Drying Irrigation Technique (PRD) under Different Nitrogen Rates on Radiation Use Efficiency for Potato (Solanum Tuberosum L.) in Semi-arid Conditions (II). International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(2), 020-031. http://dx.doi.org/10.22161/ijaers.5.2.3
Chicago
Mourad. Rezig, Béchir. Ben Nouna, Sabri Kanzari, Haroun Ben Ammar, Rahma Gatri. 2018,"Impact of Deficit Irrigation (DI) and Root-Zone Drying Irrigation Technique (PRD) under Different Nitrogen Rates on Radiation Use Efficiency for Potato (Solanum Tuberosum L.) in Semi-arid Conditions (II)". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(2):020-031. Doi: 10.22161/ijaers.5.2.3
Harvard
Mourad. Rezig, Béchir. Ben Nouna, Sabri Kanzari, Haroun Ben Ammar, Rahma Gatri. 2018,Impact of Deficit Irrigation (DI) and Root-Zone Drying Irrigation Technique (PRD) under Different Nitrogen Rates on Radiation Use Efficiency for Potato (Solanum Tuberosum L.) in Semi-arid Conditions (II), International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(2), pp:020-031
IEEE
Mourad. Rezig, Béchir. Ben Nouna, Sabri Kanzari, Haroun Ben Ammar, Rahma Gatri."Impact of Deficit Irrigation (DI) and Root-Zone Drying Irrigation Technique (PRD) under Different Nitrogen Rates on Radiation Use Efficiency for Potato (Solanum Tuberosum L.) in Semi-arid Conditions (II)", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 2, pp.020-031,2018.
Bibtex
@article {mourad.rezig2018impact,
title={Impact of Deficit Irrigation (DI) and Root-Zone Drying Irrigation Technique (PRD) under Different Nitrogen Rates on Radiation Use Efficiency for Potato (Solanum Tuberosum L.) in Semi-arid Conditions (II)},
author={Mourad. Rezig, Béchir. Ben Nouna, Sabri Kanzari, Haroun Ben Ammar, Rahma Gatri},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] Akmal, M., Janssens M.J.J. 2004: Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies. Field Crops Research, Vol. 88, 2-3, pp. 143-155. DOI: 10.1016/j.fcr.2003.12.004
[2] Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing
[3] crop water requirements. FAO Irrigation and Drainage Paper, 56 (p. 300).
[4] Ahmadi, S.H., Andersen, M.N., Plauborg, F., Poulsen, R.T., Jensen, C.R., Sepaskhah, A.R., Hansen, S (2010 a) Effects of irrigation strategies and soils on field grown potatoes: Gas exchange and xylem [ABA]. Agri. Water Management, 97: 1486-1494. DOI: 10.1016/j.agwat.2010.05.002
[5] Ahmadi, S.H., Andersen, M.N., Plauborg, F., Poulsen, R.T., Jensen, C.R., Sepaskhah, A.R., Hansen, S (2010 b) Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agri. Water Management. DOI:10.1016/j.agwat.2010.07.007.
[6] Bahrun, A., Jensen, C. R., Asch, F., & Mogensen, V. O. (2002). Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). Jour. Of Experimental Botany, 53, 251-263. http://dx.doi.org/10.1093/jexbot/53.367.251
[7] Boutraa Tahar, Abdellah Akhkha, Abdulkhaliq A. Al-Shoaibi et Ali M. Alhejeli, 2010. Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. Biology Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia
[8] Bonhomme R. 2000. Beware of comparing RUE values calculated from PAR vs solar radiation or absorbed vs intercepted radiation. Field Crops Research 68. pp 247-252
[9] Caviglia, O. P., & Sadras, V., 2001. Effect of Nitrogen Supply on Crop Conductance, Water-and Radiation-use Efficiency of Wheat. Field Crops Res. 69: 259-266.
[10] Cheikh M’hamed, H., Rezigue, M., & Ben Naceur, M. 2015. Deficit Irrigation of Durum Wheat (Triticum durum Desf): Effects on Total Dry Matter Production, Light Interception and Radiation Use Efficiency Under Different Nitrogen Rates. Sustainable Agriculture Research, 4(1), 26-40. http://dx.doi.org/10.5539/sar.v4n1p26
[11] Collino, D. J., Dardanelli, J. L., Sereno, R., & Racca, R. W. 2001. Physiological responses of argentine peanut varieties to water stress. Light interception, radiation use efficiency and partitioning of assimilates. Field Crops Res, 70, 177-184. http://dx.doi.org/10.1016/S0378-4290 (01)00137-X
[12] Cornic G. 2008. Effet de la contrainte hydrique sur la photosynthèse foliaire : De l’utilisation expérimentale des relations A/Ci et A/Cc.. article, 36 P
[13] Debaeke P., Cabelguenne M., Casals Mi., Puech J. 1996. Elaboration du rendement du blé d’hiver en conditions de déficit hydrique. II. Mise au point et test d’un modèle de simulation de la culture de blé d’hiver en conditions d’alimentation hydrique et azotée variées : Epiephase-Blé. Agronomie, EDP Sciences, 1996, 16 (1), pp.25-46.
[14] Dreccer, M.F., Schapendonk, A.H.C.M., Slafer, G.A. & Rabbinge, R., 2000. Comparative Response of Wheat and Oilseed Rape to Nitrogen Supply: Absorption and Utilization Efficiency of Radiation and Nitrogen during the Reproductive Stages Determining Yield. Plant Soil. 220: 189-205.
[15] Durand, J.L., Varlet-Grancher, C., Lemaire, G., Gastal, F. & Moulia, B., 1991. Carbon partitioning in forage crops. Acta Biotheoretica. 39: 213-224.
[16] English, M.J, Musick, J.T., Murty, V.V.N., 1990. Deficit irrigation. In: Management of farm irrigation systems (Hoffman, G.J., Howell, T.A., and Solomon, K.H., Editors). ASAE Monograph no. 9. American Society of Agricultural Engineers publisher, 1020p.
[17] Erchidi, A.E., Benbella, M., Talouizte, A., 2000. Relationship between some parameters controlling water loss and grain yield in nine varieties of durum wheat subjected to water stress. Options Méditerranéennes. Série A, Séminaires Méditerranéens 2000 pp. P: 279-282.
[18] Fletcher, A. L., Johnstone, P., Chakwizira, E., & Browen, H. E., 2013. Radiation capture and radiation use efficiency in response to N supply for crop species with contrasting canopies. Field Crops Research, 150, 126-134. http://dx.doi.org/10.1016/j.fcr.2013.06.014
[19] Gosse, G., Chartier, M., Varlet-Grancher, C. & Bonhomme, R., 1982. Interception du rayonnement utile à la photosynthèse chez la luzerne: variation et modélisation. Agronomie. 2: 539-588.
[20] Hamzei, J. & Soltani, J., 2012. Deficit irrigation of rapeseed for water-saving: Effects on biomass accumulation, light interception and radiation use efficiency under different N rates. Agriculture, Ecosystems and Environment. 155: 153-160.
[21] Hughes, G., & Keatinge, J. D. H. 1983. Solar radiation interception, dry matter production and yield in pigeon pea (Cajanus cajan (L.) Milspaugh). Field crops research, 6, 171-178. http://dx.doi.org/10.1016/03784290(83)90058-8
[22] Gencoglan, C., Altunbey, H., & Gencoglan, S. 2006. Response of green bean (P-vulgaris L.) to subsurface drip irrigation and partial rootzone drying irrigation. Agri. Water Management, 84, 274-280. http://dx.doi.org/10.1016/j.agwat.2006.02.008
[23] Kang, S. Z., Hu, X., Goodwin, I., & Jerie, P. 2002. Soil water distribution, water use, and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard. Scientia Horticulturae, 92, 277-291. http://dx.doi.org/10.1016/S0304-4238 (01)00300-4
[24] Kang, S.Z., Zhang, J.H. 2004. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. Jour. of Experimental Botany, 55: 2437-2446. DOI: 10.1093/jxb/erh249
[25] Manrique, L. A., Kiniry, J. R., Hodges, T., & Axness, D. S. (1991). Dry matter production and radiation interception of potato. Crop Sci., 31, 1044-1049. http://dx.doi.org/10.2135/cropsci1991.0011183X003100040040x
[26] Monteith J.L., 1972. Solar radiation and productivity in tropical ecosystems. J. app. Ecol. 9: 747-766.
[27] Monteith, J. L., & Elston, J. 1983. Performance and productivity of foliage in the field. In Growth and functioning of leaves: proceedings of a symposium held prior to the 13th International Botanical Congress at the University of Sydney, 18-20 August 1981/edited by JE Dale and FL Milthorpe.
[28] Monteith, J. L., & Unsworth, M. 1990. Principles of Environmental Physics (2nd ed.). Edward. Arnold, London.
[29] Muchow, R. C.; Sinclair, T. R. 1994. Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field grown maize and sorghum. Crop Science 34: 721-727.
[30] Muurinen S. & Peltonen-Sainio, P., 2006. Radiation use efficiency of modern and old spring cereal cultivars and its response to nitrogen in northern growing conditions. Field Crops Research. 96: 363-373.
[31] Rezig, M., Sahli, A., Hachicha, M., Ben Jeddi, F., & Harbaoui, Y. 2013a. Potato (Solanum tuberosum L.) and Bean (Phaseolus vulgaris L.) In Sole Intercropping: Effects on Light Interception and Radiation Use Efficiency. Journal of Agricultural Science, 5(9), 65-77. http://dx.doi.org/10.5539/jas.v5n9p65
[32] Rezig, M., H Cheikh M’hamed & M Ben Naceur. 2015a. Durum Wheat (Triticum durum Desf): Relation between Radiation Interception and Water Consumption under Different Nitrogen Rates. Journal of Agricultural Science.Vol. 7, No. 8. 225-237 pp.
[33] Rezig, M., H Cheikh M’hamed & M Ben Naceur. 2015b. Does Deficit Irrigation Affect the Relation between Radiation Interception and Water Consumption for Durum Wheat (Triticum durum Desf)?. Energy and Environment Research. Vol. 5, No. 2. 36-48 pp.
[34] Saeed, H., Grove, I. G., Kettlewell, P. S., & Hall, N. W. 2008. Potential of partial root zone drying as an alternative irrigation technique for potatoes (Solanum tuberosum). Annals of Applied Botany, 152, 71-80. http://dx.doi.org/10.1111/j.1744-7348.2007.00196.x
[35] Samadi, A., & Sepaskhah, A. R. 1984. Effects of alternate furrow irrigation on yield and water use efficiency of dry beans. Iran Agric. Research, 3, 95-115.
[36] Sarda, X., Vansuyt, G., Tousch, D., Casse-Delbart, F. & Lamaze, T., 1992. Les signaux racinaires de la régulation stomatique. In : Tolérance à la sécheresse des céréales en 164 zones méditerranéennes. Diversité génétique et amélioration variétale. Colloque INRAENSA-AGROPOLIS, Monpellier (France). INRA éd. n°64 : 75-79.
[37] Scott R. K., English S. D., Wood D. W., Undsworth M. H., 1973. The yield of sugar beet in relation to weather and length of growing season. J. Agric. Sci., 21, 339- 347.
[38] Shah, S. F. A.; McKenzie, B. A.; Gaunt, R. E.; Marshall, J. W.; Frampton, C. M. 2004. Effect of early blight (Alternaria solani) on healthy area duration and healthy area absorption of potatoes (Solanum tuberosum) grown in Canterbury, New Zealand with different nitrogen application and stress from potato cyst nematode (Globodera rostochiensis). New Zealand Journal of Crop and Horticultural Science 32: 85-102.
[39] Sinclair, T. R.; Horie, T. 1989. Leaf nitrogen, photosynthesis and crop radiation use efficiency: A review. Crop Science 29: 90-98.
[40] Sinclair, T. R.; Shiraiwa, T. 1993. Soybean radiation use efficiency as influenced by non-uniform specific leaf nitrogen distribution and diffuse radiation. Crop Science 33: 808-812.
[41] Slama A, Ben Salem M, Ben Naceur, 2005. Les céréales en Tunisie: Production, effet de la sécheresse et mécanismes de résistance. Sécheresse 16 (3): 225-229.
[42] Stöckle, C.O., & Kemanian, A.R., 2009. Crop radiation capture and use efficiency: a framework for crop growth analysis. In: Crop physiology: applications for genetic improvement and agronomy. Academic Press San Diego. pp. 145-170.
[43] Shahnazari, A., Liu, F., Andersen, M.N., Jacobsen, S.E., Jensen, C.R. 2007. Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions. Field Crops Research, 100: 117-124. DOI: 10.1016/j.fcr.2006.05.010
[44] Shayannejad, M. 2009. Effect of every other furrow irrigation on water use efficiency, starch and protein contents of potato. Agriculture Science, 1, 107-112. http://dx.doi.org/10.5539/jas.v1n2p107
[45] Teixeira, E. I., George, M., Herreman, T., Brown, H., Fletcher, A., Chakwizira, E., De Ruiter, J., Maley, S. & Noble, A., 2014. The impact of water and nitrogen limitation on maize biomass and resource use efficiencies for radiation, water and nitrogen. Field Crops Research, 168: 109-118.
[46] Wang, Y., Liu, F., Jensen, L.S., de Neergaard, A., Jensen, C.R. 2013. Alternate partial root-zone irrigation improves fertilizer-N use efficiency in tomatoes. Irrigation Science 31, 589–598. http://dx.doi.org/10.1007/s00271-012-0335-3.
[47] Wilson, D. R., & Jamieson, P. D. 1985. Models of Growth and Water Use of Wheat in New Zealand. In W. Day & R. K. Atkin (Eds.). Wheat Growth and Modeling (pp. 211-216). London: Plenum Press. http://dx.doi.org/10.1007/978-1-4899-3665-3_21
[48] Zhang, H., Oweis, T., 1999. Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agric. Water Manage 38, 195-211.