Statistics

    Map

Twitter

Introduction to the Method of Finite Elements by a balance Sheet Problem: A Simplification for an Initial understanding of the Method
( Vol-5,Issue-1,January 2018 )
Author(s):

Júlio Paulo Cabral dos Reis, Pedro Américo Almeida Magalhães Júnior

Keywords:

Finite Element Method, Beams, Differential Equations.

Abstract:

The Finite Element method is one of the most widely used methods by Engineers in the various areas of activity, especially Mechanical Engineering, to design or solve problems. However, the understanding of the method is not always easy to perform, since in the literature, when explaining the method, the examples are generic or presented quickly. Thus, this paper presents the solution of a problem involving a rocking beam (set), which is solved analytically and later by the finite element method. The comparison of the solutions found is established as reflection analysis. Elasticity theory, Ordinary Differential Equations and Finite Element Method are used to approximate the reader of the Finite Element Method, in a concise and objective, easy-to-understand reading performed with a reduced explanation. Comparing the method by means of a problem.

ijaers doi crossref DOI:

10.22161/ijaers.5.1.1

Paper Statistics:
  • Total View : 96
  • Downloads : 26
  • Page No: 001-004
Cite this Article:
Show All (MLA | APA | Chicago | Harvard | IEEE | Bibtex)
Share:
References:

[1] LAUDARES, João Bosco; MIRANDA, Dimas F.; REIS, Júlio Paulo Cabral; FURLETTI, Saulo. Equações Diferenciais Ordinárias e Transformadas de Laplace. Belo Horizonte: Artesã. 2017
[2] SOUZA, Remo Magalhães de. O método dos Elementos Finitos Aplicado ao Problema de Condução de Calor. UFPA. Belém. PA. 2003Myers, D. G. (2007). Psychology(1stCanadian ed.). New York, NY: Worth.
[3] GERDAU. Tabela de Bitolas. Perfis Gerdau Açominas. São Paulo. SP. 2017. Disponível in:< http://www.soufer.com.br/arquivos/laminados/2.pdf>. Acesso: 29/09/2017.
[4] ASSAN, Alosio Enersto. Método dos elementos finitos – primeiros passos. Ed. Unicamp. 2ª ed. São Paulo. SP. 2003.
[5] DEPARTAMENTO DE ENGENHARIA MECÂNICA. DEMEC. Apostila de introdução ao método de elementos finitos. UFPR. 2016. Disponível in: Acesso in: 25 de Setembro de 2017.