Statistics

    Map

Twitter

Perspectives of PV Microgeneration in Brazil: A Proposition of Regulation Enhancement Methodology
( Vol-5,Issue-9,September 2018 )
Author(s):

João Lucas Fontinele Victor, Sandro César Silveira Jucá, Renata Imaculada Soares Pereira, Solonildo Almeida da Silva

Keywords:

Solar Photovoltaic Energy, Distributed Generation, Net Energy Metering, Delphi Method.

Abstract:

The solar photovoltaic (PV) generation is disseminating on multiple kinds of sites due to the energy market liberalization, the renewable energy sources subsidies policy, the decreasing of acquisition costs and the adaptability to different installation conditions. These factors allowed the growth of PV generation, especially in the distributed generation (DG) segment. Meanwhile, the development of a legal and regulatory apparatus became mandatory to assure benefits to DG-adopters, without causing damages to the utility grid, preventing technical failures and eventual excessive pricing to non-adopters. As the technology innovations impose new possibilities and the number of adopters grows exponentially, the challenges become more visible and a regulation update, urgent. In this context, this paper aims to review the current pricing model for DG in Brazil, focusing on PV microgeneration, and to propose a methodology based on the Delphi Method to enhance the most critical topics of the on-going regulation.

ijaers doi crossref DOI:

10.22161/ijaers.5.9.2

Paper Statistics:
  • Total View : 158
  • Downloads : 52
  • Page No: 010-017
Cite this Article:
MLA
João Lucas Fontinele Victor et al ."Perspectives of PV Microgeneration in Brazil: A Proposition of Regulation Enhancement Methodology". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 9, 2018, pp.010-017 AI Publications, doi:10.22161/ijaers.5.9.2
APA
João Lucas Fontinele Victor, Sandro César Silveira Jucá, Renata Imaculada Soares Pereira, Solonildo Almeida da Silva(2018).Perspectives of PV Microgeneration in Brazil: A Proposition of Regulation Enhancement Methodology. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(9), 010-017. http://dx.doi.org/10.22161/ijaers.5.9.2
Chicago
João Lucas Fontinele Victor, Sandro César Silveira Jucá, Renata Imaculada Soares Pereira, Solonildo Almeida da Silva. 2018,"Perspectives of PV Microgeneration in Brazil: A Proposition of Regulation Enhancement Methodology". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(9):010-017. Doi: 10.22161/ijaers.5.9.2
Harvard
João Lucas Fontinele Victor, Sandro César Silveira Jucá, Renata Imaculada Soares Pereira, Solonildo Almeida da Silva. 2018,Perspectives of PV Microgeneration in Brazil: A Proposition of Regulation Enhancement Methodology, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(9), pp:010-017
IEEE
João Lucas Fontinele Victor, Sandro César Silveira Jucá, Renata Imaculada Soares Pereira, Solonildo Almeida da Silva."Perspectives of PV Microgeneration in Brazil: A Proposition of Regulation Enhancement Methodology", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 9, pp.010-017,2018.
Bibtex
@article {joãolucasfontinelevictor2018perspectives,
title={Perspectives of PV Microgeneration in Brazil: A Proposition of Regulation Enhancement Methodology},
author={João Lucas Fontinele Victor, Sandro César Silveira Jucá, Renata Imaculada Soares Pereira, Solonildo Almeida da Silva},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
[2] IEA (2017). World Energy Investment 2017: Executive Summary. IEA Secretariat, Paris, France, 12 pp.
[3] REN21 (2017). Renewables 2017 Global Status Report. REN21 Secretariat, Paris, France, 302 pp.
[4] Ackermann, T., Anderson, G., Soder, L. (2001).Distributed Generation: A Definition. Electric Power System Research 57(3), pp.195-204.
[5] Costello, K. (2015). Major Challenges of Distributed Generation for State Utility Regulators. The Electricity Journal, 28(3), pp.8-25.
[6] Katiraei, F. and Aguero, J. (2011). Solar PV Integration Challenges. IEEE Power and Energy Magazine, 9(3), pp.62-71.
[7] Ramalho, M., Pereira, G., Silva, P., Dantas, G. (2017). Photovoltaic energy diffusion through net-metering and feed-in tariff policies: Learning from Germany, California, Japan and Brazil. [Online Exclusive]. GESEL. Retrieved from: http://www.gesel.ie.ufrj.br/index.php/Publications/index/2.
[8] Prado, T., Oliveira, M., Camargo, I. (2008)The Brazilian Renewable Energy Incentive Program – The Second Phase of thePROINFA: Assessing Policy Efficiency and Barriers in Long-term Scenarios. [Online Exclusive]. GSEP - UNB. Retrieved from: http://www.gsep.ene.unb.br/producao/marco/IEEE_Energy_2030.pdf
[9] Dutra, R. and Szklo, A. (2008). Incentive policies for promoting wind power production in Brazil: Scenarios for the Alternative Energy Sources Incentive Program (PROINFA) under the New Brazilian electric power sector regulation. Renewable Energy, 33(1), pp.65-76.
[10] GlobalData (2017). Brazil Renewable Energy Policy Handbook 2017. [Online Exclusive]. GlobalData. Retrieved from: http://www.arena-international.com/Uploads/2017/11/27/r/c/j/Free-Brazil-Renewable-Energy-Policy-Handbook-2017.pdf
[11] Jannuzzi, G. and de Melo, C. (2013). Grid-connected photovoltaic in Brazil: Policies and potential impacts for 2030. Energy for Sustainable Development, 17(1), pp.40-46.
[12] Mitscher, M., Rüther, R. (2012). Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil. Energy Policy, Elsevier, 49(C), pp. 688-694.
[13] Cerqueira, A., Balduíno, A. and Lima, D. (2018). Feasibility Analysis of the Solar Energy System in Civil Construction. International Journal of Advanced Engineering Research and Science, 5(6), pp.39-44.
[14] Silva, L. (2007) The electricity generation sector in Brazil: the perception of regulatory and environmental risk. Washington, DC: The George Washington University. 45 pp. Retrieved from: http://www2.aneel.gov.br/biblioteca/trabalhos/trabalhos/Artigo_Ludimila_Silva.pdf
[15] ANEEL (2017). PRODIST – Módulo 3. [Online Exclusive]. ANEEL. Retrieved from: http://www.aneel.gov.br/modulo-3.
[16] ANEEL (2018). Sistema de Registro de Geração Distribuída. [Online Exclusive]. ANEEL. Retrieved from: http://www2.aneel.gov.br/scg/gd/GD_Distribuidora.asp.
[17] Zinaman, O., Aznar, A., Linvill, C., Darghouth, N., Dubbeling, T., Bianco, E. (2017) Grid-Connected Distributed Generation: Compensation Mechanismis Basics. [Online Exclusive]. National Renewable Energy Laboratory. Retrieved from: https://www.nrel.gov/docs/fy18osti/68469.pdf.
[18] Eid, C., RenesesGuillén, J., Frías Marín, P. and Hakvoort, R. (2014). The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives. Energy Policy, 75, pp.244-254.
[19] Bird, L., McLaren, J., Heeter, J., Linvill, C., Shenot, J., Sedano, R., Migden-Ostrander, J. (2013) Regulatory Considerations Associated with the Expanded Adoption of Distributed Solar. [Online Exclusive]. National Renewable Energy Laboratory. Retrieved from: https://www.nrel.gov/docs/fy14osti/60613.pdf.
[20] ANEEL (2017). Nota Técnica N° n° 0056/2017: Atualização das projeções de consumidores residenciais e comerciais com microgeração solar fotovoltaicos no horizonte 2017 - 2024. ANEEL, Brasília, Brasil 26 pp.
[21] Linstones, H., Turoff, M. (2002) The Delphi Method; techniques and applications. [Online Exclusive] ListoneadnTurof. Retrieved from: http://is.njit.edu/pubs/delphibook.
[22] Giovinazzo, R. (2001) Modelo de aplicação da Metodologia Delphi pela internet – vantagens e ressalvas. [Online Exclusive] Administração On Line. Retrieved from: http://www.fecap.br/adm_online/art22/renata.htm
[23] Czaplicka-Kolarz, K., Stańczyk, K. and Kapusta, K. (2009). Technology foresight for a vision of energy sector development in Poland till 2030. Delphi survey as an element of technology foresighting. Technological Forecasting and Social Change, 76(3), pp.327-338.
[24] Celiktas, M. and Kocar, G. (2010). From potential forecast to foresight of Turkey's renewable energy with Delphi approach. Energy, 35(5), pp.1973-1980.
[25] Varho, V., Rikkonen, P. and Rasi, S. (2016). Futures of distributed small-scale renewable energy in Finland — A Delphi study of the opportunities and obstacles up to 2025. Technological Forecasting and Social Change, 104, pp.30-37.
[26] Gallego Carrera, D. and Mack, A. (2010). Sustainability assessment of energy technologies via social indicators: Results of a survey among European energy experts. Energy Policy, 38(2), pp.1030-1039.
[27] Hsueh, S. (2015). Assessing the effectiveness of community-promoted environmental protection policy by using a Delphi-fuzzy method: A case study on solar power and plain afforestation in Taiwan. Renewable and Sustainable Energy Reviews, 49, pp.1286-1295.
[28] Galo, J., Macedo, M., Almeida, L. and Lima, A. (2014). Criteria for smart grid deployment in Brazil by applying the Delphi method. Energy, 70, pp.605-611.