Statistics

    Map

Twitter

Survival Analysis in Patients with Dengue Hemorrhagic Fever (DHF) Using Cox Proportional Hazard Regression
( Vol-4,Issue-7,July 2017 )
Author(s):

Luluk Handayani, Mohamat Fatekurohman, Dian Anggraeni

Keywords:

survival analysis; DHF; cox proportional hazard.

Abstract:

Indonesia is a tropical country that has two seasons: the rainy season and dry season. In the rainy season frequent flooding or puddles of water that could become mosquito breeding and the spread of various diseases, one of which is the dengue fever. Dengue Hemorrhagic Fever (DHF) is the cause of public health problems with a very rapid deployment and can lead to death within a short time. This causes dengue become one of the attractions to be investigated further. This study discusses the survival analysis and the factors that affect the healing rate of dengue patients using Cox proportional hazard regression based on data from the medical records of hospitalized dengue patients at the Jember Klinik Hospital. The results showed that the factors of age, gender, hemoglobin, trombonist, and hematocrit affect the healing rate of DHF patients.

ijaers doi crossref DOI:

10.22161/ijaers.4.7.22

Paper Statistics:
  • Total View : 81
  • Downloads : 4
  • Page No: 138-145
Cite this Article:
Show All (MLA | APA | Chicago | Harvard | IEEE | Bibtex)
Share:
References:

[1] Collett, D. (2003). Modelling Survival Data in Medical Research. 2nd edision . Chapman and Hall/CRC, London.
[2] Darmowandowo, W. (2006). Continuing Education. Divisi Tropik & Infeksi Bagian Ilmu Kesehatan Anak FK Unair RSU Dr. Soetomo,Surabaya.
[3] Gandasoebrata, R. (2009). Penuntun Laboratorium Klinik. Dian Rakyat, Jakarta.
[4] Kleinbaum, D.G. & Klein, M. (2012). Survival Analysis: A Self-Learning Text. Springer, London. Kusriastuti, R. (2011). Modul Pengendalian Demam Berdarah Dengue. Kementrian Kesehatan RI, Jakarta. Le, C.T. (1997). Applied Survival Analysis. John Wiley and Sons Inc, New York.
[5] Lee, E.T. & Wang, J.W. (2003). Statistical Methods for Survival Data Analysis. 3rd edision. John Wiley and Sons Inc, Canada.
[6] Mufidah, A.S. (2016). Analisis Survival Pada Pasien Demam Berdarah Dengue (DBD) di RSU Haji Surabaya Menggunakan Model Regresi Weibull. Jurnal Sains dan Seni ITS, 5(2), p. 2337-3520.
[7] Nisa’, S.F. (2012). Analisis Survival Dengan Pendekatan Multivariate Adaptive Regression Splines Pada Kasus Demam Berdarah Dengue (DBD). Jurnal Sains dan Seni ITS, 1(1), p.318-323.
[8] Sari, N. (2011). Aplikasi Regresi Cox Propotional Hazard Pada Analisis Kesintasan Dan Identifikasi Faktor Resiko. Skripsi. Departemen Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sumatra Utara, Medan.
[9] Omurlu, I.K., Ture, M. & Tokatli, F. (2009). The Comparisons of Random Survival Forest and Cox Regression analysis with Simulation and an Application Related to Breast Cancer. Journal International of Expert Systems with Applications, 36, p. 8582-8588.
[10] WHO. (2009). Dengue, Guidelines For Diagnosis, Treatment, Prevention, and Control. Special Programme for Research and Training in Tropical Disease (TDR), France.