A taxonomy of tasks in dam cracks surveillance for augmented reality application

( Vol-5,Issue-10,October 2018 ) OPEN ACCESS

Fabiana F. F. Peres, Sérgio Scheer, Étore Funchal de Faria


augmented reality, task-analysis process, crack surveillance, dam crack, taxonomy.


Augmented reality is an advanced computational visualization technology that alters how users in the real world can perceive the virtual information. The use of this technology for EAC/FM is being widely investigated. In the scope of dam safety, the constant analysis of concrete behavior is mandatory, searching for clues of pathologies such as cracks. Cracks are relatively common in concrete structures, nevertheless they need to be surveilled due to the risks they offer. The surveillance of cracks involves exhaustive tasks, and for dams, it consists in the execution of a set of complex tasks that demands access to accumulated data and information. Augmented reality can contribute with the visualization process of this information, diminishing the mental workload demand. This paper defines a hierarchical taxonomy of the tasks that are needed in this domain, using Berliner´s taxonomy to classify the tasks, enhancing the understanding of the points where the augmented reality can be used with better results.

ijaers doi crossref DOI:


Paper Statistics:
  • Total View : 176
  • Downloads : 20
  • Page No: 179-184
Cite this Article:
Click here to get all Styles of Citation using DOI of the article.

[1] Golparvar-Fard M, Asce M, Peña-Mora F, Savarese S, Asce M, Peña-Mora F, et al. Integrated Sequential As-Built and As-Planned Representation with Tools in Support of Decision-Making Tasks in the AEC/FM Industry. J Constr Eng Manag 2011;137:1099–116. doi:10.1061/(ASCE)CO.1943-7862.0000371.
[2] Golparvar-Fard M, Peña-Mora F, Savarese S. D4AR-A 4-Dimensional Augmented Reality Model for Automating Construction Progress Monitoring Data Collection, Processing and Communication. Electron J Inf Technol Constr 2009;14:129–53.
[3] Irizarry J, Gheisari M, Williams G, Walker BN. InfoSPOT: A Mobile Augmented Reality Method for Accessing Building Information Through a Situation Awareness Approach. Autom Constr 2013;33:11–23. doi:10.1016/j.autcon.2012.09.002.
[4] Kwon O-S, Park C-S, Lim C-R. A defect management system for reinforced concrete work utilizing BIM, image-matching and augmented reality. Autom Constr 2014. doi:10.1016/j.autcon.2014.05.005.
[5] Bae H, Golparvar-Fard M, White J. High-Precision Vision-Based Mmobile Augmented Reality System for Context-Aware Architectural, Engineering, Construction and Facility Management (AEC/FM) Applications. Vis Eng 2013;1:3. doi:10.1186/2213-7459-1-3.
[6] Park CS, Kim HJ. A framework for construction safety management and visualization system. Autom Constr 2013;33:95–103. doi:10.1016/j.autcon.2012.09.012.
[7] Park CS, Lee DY, Kwon OS, Wang X. A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template. Autom Constr 2013;33:61–71. doi:10.1016/j.autcon.2012.09.010.
[8] Schwald B, Schwald B, DeLaval B, DeLaval B. An Augmented Reality System for Training and Assistance to Maintenance in the Industrial Context. 11th Int Conf Cent Eur Comput Graph Vis Comput Vis 2003:425–32. doi:10.1007/11941354_29.
[9] Shin DH, Dunston PS. Evaluation of Augmented Reality in steel column inspection. Autom Constr 2009;18:118–29. doi:10.1016/j.autcon.2008.05.007.
[10] Wang X, Truijens M, Hou L, Wang Y, Zhou Y. Integrating Augmented Reality with Building Information Modeling: Onsite construction process controlling for liquefied natural gas industry. Autom Constr 2014;40:96–105. doi:10.1016/j.autcon.2013.12.003.
[11] Wang X, Love PE. BIM + AR: Onsite information sharing and communication via advanced visualization. Proc 2012 IEEE 16th Int Conf Comput Support Coop Work Des 2012:850–5. doi:10.1109/CSCWD.2012.6221920.
[12] Meža S, Turk Ž, Dolenc M. Component based engineering of a mobile BIM-based augmented reality system. Autom Constr 2014;42:1–12. doi:10.1016/j.autcon.2014.02.011.
[13] Wang X, Dunston PS. Compatibility issues in Augmented Reality systems for AEC: An experimental prototype study. Autom Constr 2006;15:314–26. doi:10.1016/j.autcon.2005.06.002.
[14] Dunston PS, Asce AM, Wang X. Mixed Reality-Based Visualization Interfaces for Architecture , Engineering , and Construction Industry 2005:1301–9.
[15] Reinhart G, Patron C, Reallty A. Integrating Augmented Reality in the Assembly Domain - Fundamentals, Benefits and Applications 2002.
[16] Hou L, Wang X. Experimental Framework for Evaluating Cognitive Workload of Using AR System for General Assembly Task. Proc 28th Int Symp Autom Robot Constr 2011:625–30.
[17] Hou L, Wang X. A Study on the Benefits of Augmented Reality in Retaining Working Memory in Assembly Tasks: A Focus on Differences in Gender. Autom Constr 2013;32:38–45. doi:10.1016/j.autcon.2012.12.007.
[18] Lee S, Akin Ö. Augmented reality-based computational fieldwork support for equipment operations and maintenance. Autom Constr 2011;20:338–52. doi:10.1016/j.autcon.2010.11.004.
[19] Su X, Talmaki S, Cai H, Kamat VR. Uncertainty-aware visualization and proximity monitoring in urban excavation: a geospatial augmented reality approach. Vis Eng 2013;1:2. doi:10.1186/2213-7459-1-2.
[20] Wang X, Dunston PS, Skiniewski M. Mixed Reality Technology Applications in Construction Equipment Operator Training. 21st Int Symp Autom Robot Constr 2004.
[21] Fujiwara N, Onda T. Virtual Property Lines Drawing on the Monitor for Observation of Unmanned Dam Construction Site. ACM Int Symp Mix Augment Real - ISAR 2000:101–4. doi:10.1109/ISAR.2000.880932.
[22] Shrahily RY, Medjdoub B, Kashyap M, Chalal ML. Communication framework to support more effective onsite construction monitoring 2015;149:195–203. doi:10.2495/BIM150171.
[23] Behzadan AH, Dong S, Kamat VR. Augmented Reality Visualization: A Review of Civil Infrastructure System Applications. Adv Eng Informatics 2015;29:252–67.
[24] Hammad A, Garrett Jr. JH, Karimi HA. Potential of Mobile Augmented Reality for Infrastructure Field Tasks. Seventh Int. Conf. Appl. Adv. Technol. Transp., United States: ASCE Press; 2002, p. 425–32. doi:9780784406328.
[25] Zhou Y, Luo H, Yang Y. Implementation of Augmented Reality for Segment Displacement Inspection During Tunneling Construction. Autom Constr 2017;82:112–21. doi:10.1016/j.autcon.2017.02.007.
[26] Chi H-L, Kang S-C, Wang X. Research Trends and Opportunities of Augmented Reality Applications in Architecture, Engineering, and Construction. Autom Constr 2013;33:116–22. doi:10.1016/j.autcon.2012.12.017.
[27] Brasil. Lei No. 12.334, de 20 de Setembro de 2010. . Brasília, Brasil: 2010.
[28] ICOLD. Dam Safety Management : Operational Phase of the Dam Life Cycle - Bulletin 154. Paris: CIGB - ICOLD; 2013.
[29] ICOLD. Dam Surveillance Guide - Bulletin 158. Paris: ICOLD; 2014.
[30] ICOLD. Concrete Dams - Control and Treatment of Cracks - Bulletin 107. Paris: CIGB - ICOLD; 1997.
[31] Currás E. Ontologias, Taxonomias e Tesauros em Teoria de Sistemas e Sistemática. Brasília: Thesaurus; 2010.
[32] Vignoli RG, Souto DVB, Cervantes BMN. Sistemas de organização do conhecimento com foco em ontologias e taxonomias. Informação E Soc 2013;23:59–72.
[33] BERLINER DC, ANGELL D, SHEARER J. Behaviors, Measures and Instruments for Performance Evaluation in Simulated Environments. Symp Work Quantif Hum Perform 1964:277–96.
[34] Begosso LC. S. PERERE - Uma Ferramenta Apoiada por Arquiteturas Cognitivas para o Estudo da Confiabilidade Humana. USP, 2005.
[35] Eurocontrol. Technical Review of Human Performance Models and Taxonomies of Human Error in ATM ( HERA ). Brussels, Belgium: Eurocontrol; 2002.
[36] Everett JG. Construction Automation: Basic Task Selection an Development of the Cranium. Massachusetts Institute of Technology, 1991.
[37] Dunston PS, Wang X. A Hierarchical Taxonomy of AEC Operations for Mixed Reality Applications. Electron J Inf Technol Constr 2011;16:433–44.