Statistics

    Map

Twitter


Estimation of Rainfall-Runoff Relationship Using Artificial Neural Network Models for Muskegon Basin

( Vol-5,Issue-12,December 2018 ) OPEN ACCESS
Author(s):

Fatih ÜNEŞ, Onur BÖLÜK, Yunus Ziya KAYA, Bestami TAŞAR, Hakan VARÇİN

Keywords:

Rainfall – runoff relation, Artificial neural networks, Multiple linear regression, Prediction.

Abstract:

In order to determine the use, protection and economic life of water resources; it is important to make estimations about rainfall-runoff values. However, it is quite complicated to estimate rainfall-runoff. For this reason, Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) methods, which are widely used today for complex hydrological problems, are preferred for the rainfall-runoff model. For model creation, the hydrological and seasonal data from the United States Muskegon basin are used. Estimation study was done with ANN and MLR methods using 1396 daily rainfall, temperature and rainfall data belonging to the region. According to the model results, it is seen that the ANN method has results with low error and high determination in the rainfall runoff model. ANN method can be used as an alternative way to classical methods in rainfall-runoff predictions.

ijaers doi crossref DOI:

10.22161/ijaers.5.12.28

Paper Statistics:
  • Total View : 154
  • Downloads : 55
  • Page No: 198-205
Cite this Article:
Click here to get all Styles of Citation using DOI of the article.
References:

[1] Bayazıt, M., (1999). Hidroloji, İstanbul Teknik Üniversitesi İnşaat Fakültesi Matbaası, İstanbul, 242s.
[2] Üneş, F. (2010). Dam reservoir level modelıng by neural network approach. A case study, Neural Network World, 4(10), 461–474.
[3] Üneş, F., Demirci, M., Kişi, Ö. (2015). Prediction of millers ferry dam reservoir level in usa using artificial neural network, Periodica Polytechnica Civil Engineering, 59(3), 309–318.
[4] Demirci,M. & Unes, F. (2015) “Generalized Regression Neural Networks For Reservoir Level Modeling”, International Journal of Advanced Computational Engineering and Networking, 3, 81-84.
[5] Unes, F., Yildirim, S., Cigizoglu, HK., Coskun, H. (2013). Estimation of dam reservoir volume fluctuations using artificial neural network and support vector regression - Journal of Engineering Research.
[6] Unes, F., Gumuscan, F. G., Demirci, M. (2017). Prediction of Dam Reservoir Volume Fluctuations Using Adaptive Neuro Fuzzy Approach, EJENS, Volume 2, Issue 1, pp. 144-148
[7] Demirci, M., Üneş, F., Kaya, Y.Z., Tasar, B., Varcin, H. (2018). Modeling of Dam Reservoir Volume Using Adaptive Neuro Fuzzy Method, Air and Water Components of the Environment Conference, DOI: 10.24193/AWC2018_18
[8] ÜNEŞ FATİH,KAYA YUNUS ZİYA,MAMAK MUSTAFA,DEMİRCİ MUSTAFA (2017). Evapotranspiration Estimation Using Support Vector Machines and Hargreaves-Samani Equation for St. Johns, FL, USA. Proccedings of 10th International Conference ”Environmental Engineering”, Doi: 10.3846/enviro.2017.094
[9] Taşar, B., Üneş, F., Demirci, M., & Kaya, Y. Z. Yapay sinir ağları yöntemi kullanılarak buharlaşma miktarı tahmini. DÜMF Mühendislik Dergisi, 9(1), 543-551.
[10] Kebir, F. O., Demirci, M., Karaaslan, M., Ünal, E., Dincer, F., & Arat, H. T. (2014). Smart grid on energy efficiency application for wastewater treatment. Environmental Progress & Sustainable Energy, 33(2), 556-563.
[11] Cansiz, O. F., Calisici, M., & Miroglu, M. M. (2009, December). Use of artificial neural network to estimate number of persons fatally injured in motor vehicle accidents. In Proceedings of the 3rd International Conference on Applied Mathematics, Simulation, Modelling, Circuits, Systems and Signals (pp. 136-142). World Scientific and Engineering Academy and Society (WSEAS).
[12] Cansiz, O. F. (2011). Improvements in estimating a fatal accidents model formed by an artificial neural network. Simulation, 87(6), 512-522.
[13] Cansiz, O. F., & Easa, S. M. (2011). Using artificial neural network to predict collisions on horizontal tangents of 3D two-lane highways. International Journal of Engineering and Applied Sciences, 7(1), 47-56.
[14] Cansız Ö. F., Çalışıcı M., Ünsalan K., Erginer İ. (2017). Türkiye İçin Trafik Kaza Sayısı Tahmin Modellerinin Oluşturulması. 2. Uluslararası Mühendislik ve Tasarım Kongresi, Sayfa 615-616.
[15] Cansız Ö. F., Çalışıcı M., Ünsalan K. (2017). Türkiye Karayollarında Meydana Gelen Kazalarda Oluşan Yaralı Sayısı için Tahmin Modellerinin Oluşturulması, 2. Uluslararası Mühendislik ve Tasarım Kongresi, Sayfa:498-499.
[16] Cansız Ö. F. (2007). Enerji Politikalarının Ulaştırma Sistemlerinin Optimizasyonu İle Geliştirilmesi ve Uygulamadan Elde Edilen Getirilerin Ortaya Konması, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
[17] Cansız, Ö. F., Askar, D. D. (2018). Developing Multi Linear Regression Models for Estimation of Marshall Stability, International Journal of Advanced Engineering Research and Science (IJAERS), Vol-5, Issue-6. https://dx.doi.org/10.22161/ijaers.5.6.10 ISSN: 2349-6495(P) | 2456-1908(O).
[18] Cansız Ö. F., Çalışıcı M., Duran D., Ünsalan K. (2017). Marshall Deneyi Sonuçları İçin Geliştirilen Tahmin Modellerinin İncelenmesi, 2. Uluslararası Mühendislik ve Tasarım Kongresi, Sayfa:523-524.
[19] Dogan A., Cansiz O. F., Unsalan K., Karaca N. (2017). Investigation of Multi Linear Regression Methods on Estimation of Free Vibration Analysis of Laminated Composite Shallow Shells, International Journal of Advanced Engineering Research and Science (ISSN : 2349-6495(P) | 2456-1908(O)),4(12), 114-120.
[20] Demirci, M., Üneş, F., Saydemir, S. (2015). Suspended sediment estimation using an artificial intelligence approach. In: Sediment matters. Eds. P. Heininger, J. Cullmann. Springer International Publishing p. 83–95.
[21] Tasar, B., Kaya, Y. Z., Varcin, H., Üneş, F., Demirci, M. (2017). Forecasting of Suspended Sediment in Rivers Using Artificial Neural Networks Approach, International Journal of Advanced Engineering Research and Science (IJAERS), 4(12), pp. 79-84.
[22] Demirci, M., & Baltaci, A. (2013). Prediction of suspended sediment in river using fuzzy logic and multilinear regression approaches. Neural Computing and Applications, 23(1), 145-151.
[23] Üneş, F. (2010). Prediction of density flow plunging depth in dam reservoir: An artificial neural network approach”, Clean - Soil, Air, Water, 38, 296 – 308.
[24] Demirci, M., Unes, F., Kaya, Y. Z., Mamak, M., Tasar, B., & Ispir, E. (2017, March). ESTIMATION OF GROUNDWATER LEVEL USING ARTIFICIAL NEURAL NETWORKS: A CASE STUDY OF HATAY-TURKEY. In 10th International Conference „Environmental Engineering “.
[25] Kaya, Y. Z., Üneş, F., Demirci, M. Tasar, B., Varcin, H. (2018). GROUNDWATER LEVEL PREDICTION USING ARTIFICIAL NEURAL NETWORK AND M5 TREE MODELS, Air and Water Components of the Environment Conference, DOI: 10.24193/AWC2018_23
[26] Demirci,M., Unes, F., Akoz, M. S. (2016). Determination of nearshore sandbar crest depth using neural network approach, International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-12, Dec- 2016, ISSN: 2349-6495(P) | 2456-1908(O)
[27] Sharifi, A., Dinpashoh, Y., & Mirabbasi, R. (2017). Daily runoff prediction using the linear and non-linear models. Water Science and Technology, 76(4), 793-805.
[28] Nacar, S., Kankal, M., & Hınıs, M. A. (2018). Çok Değişkenli Uyarlanabilir Regresyon Eğrileri (ÇDURE) ile Günlük Akarsu Akımlarının Tahmini-Haldizen Deresi Örneği. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 38-47.
[29] Gemici, E., Ardıçlıoğlu, M., & Kocabaş, F. (2016). Akarsularda debinin yapay zekâ yöntemleri ile modellenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 29(2), 135-143.
[30] Chakravarti, A., Joshi, N., & Panjiar, H. (2015). Rainfall runoff analysis using artificial neural network. Indian Journal of Science and Technology, 8(14).
[31] Tongal, H., & Booij, M. J. (2018). Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology, 564, 266-282.
[32] USGS.gov | Science for a changing world [WWW Document], n.d. URL https://www.usgs.gov/