Statistics

    Map

Twitter

Evaluation of the Flexural Strength, Sorption, Rheological and Thermal Properties of Corncob Plastic Composites
( Vol-5,Issue-12,December 2018 )
Author(s):

Olufemi O. Adefisan, Armando G. McDonald

Keywords:

Corncobs, flexural properties, particle size, plastic composites.

Abstract:

Plastic composites were made from corncobs and high density polyethylene (HDPE) by extrusion and evaluated. The composites were manufactured using two different screened corncob particle size fractions (<2 mm and <0.5 mm) and tested for flexural properties, water sorption, melt flow and thermal properties. The melt viscosities at 190oC were 18.0 ± 0.8 kPa•s (<2 mm) and 24.0 ± 0.6 kPa•s (<0.5 mm). The results obtained indicated that the composites made with the smaller particle size fraction had higher flexural strength (31.7 ± 1.7 MPa) and modulus of elasticity (1.4 ± 0.1 GPa) than those made with the larger particle size fraction (21.2 ± 1.4 MPa and 1.1 ± 0.1 GPa). Also, the composites made with the smaller particles and were more dimensionally stable. Corncob composites had thermal stability range of 259 – 274oC (onset degradation temperature). The corncob composites made with smaller sized particles possessed better properties in comparison with those made from the <2 mm. Particle size and density significantly affected the mechanical, physical and thermal properties of the composites evaluated.

ijaers doi crossref DOI:

10.22161/ijaers.5.12.4

Paper Statistics:
  • Total View : 39
  • Downloads : 10
  • Page No: 018-025
Cite this Article:
MLA
Olufemi O. Adefisan et al ."Evaluation of the Flexural Strength, Sorption, Rheological and Thermal Properties of Corncob Plastic Composites ". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 12, 2018, pp.018-025 AI Publications, doi:10.22161/ijaers.5.12.4
APA
Olufemi O. Adefisan, Armando G. McDonald(2018).Evaluation of the Flexural Strength, Sorption, Rheological and Thermal Properties of Corncob Plastic Composites . International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(12), 018-025. http://dx.doi.org/10.22161/ijaers.5.12.4
Chicago
Olufemi O. Adefisan, Armando G. McDonald. 2018,"Evaluation of the Flexural Strength, Sorption, Rheological and Thermal Properties of Corncob Plastic Composites ". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(12):018-025. Doi: 10.22161/ijaers.5.12.4
Harvard
Olufemi O. Adefisan, Armando G. McDonald. 2018,Evaluation of the Flexural Strength, Sorption, Rheological and Thermal Properties of Corncob Plastic Composites , International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(12), pp:018-025
IEEE
Olufemi O. Adefisan, Armando G. McDonald."Evaluation of the Flexural Strength, Sorption, Rheological and Thermal Properties of Corncob Plastic Composites ", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 12, pp.018-025,2018.
Bibtex
@article {olufemio.adefisan2018evaluation,
title={Evaluation of the Flexural Strength, Sorption, Rheological and Thermal Properties of Corncob Plastic Composites },
author={Olufemi O. Adefisan, Armando G. McDonald},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] B. Ajayi (2002). Preliminary investigation of cement bonded particleboard from maize stalk residues. The Nigerian Journal of Forestry. 33(1), 33-37.
[2] B. Ajayi (2006). Properties of maize stalk based cement bonded composites. Forest Products Journal (ISSN: 0015-7473 (P)). 56 (6), 51-55.
[3] S. Panthapulakkal, M. Sain (2007). Agro-residue reinforced high-density polyethylene composites: Fiber characterization and analysis of composite properties. Composites: Part A (ISSN: 1359-835X (P)). 38, 1445–1454. doi:10.1016/j.compositesa.2007.01.015
[4] H.O. Opara, I.O. Igwe, C.M. Ewulonu (2016). Mechanical and chemical resistance properties of high density polyethylene filled with corncob and coconut fiber. International Research Journal of Pure and Applied Chemistry (ISSN: 2231-3443). 11(2), 1-10. DOI: 10.9734/IRJPAC/2016/22902
[5] O.O. Adefisan (2011). Influence pre-treatment on the compatibility of maize cob cement mixtures. Nigerian Journal of Forestry. 41(1), 1-5.
[6] Z. Luo, P. Li, D. Cai, Q. Chen, P. Qin, T. Tan, H. Cao (2017). Comparison of performances of corn fiber plastic composites made from different parts of corn stalk. Industrial Crops and Products (ISSN: 0926-6690 (P)) 95, 521–527. http://dx.doi.org/10.1016/j.indcrop.2016.11.005
[7] A.O. Atere, A.P. Olalusi, O.J. Olukunle (2016). Physical properties of some maize varieties. Journal of Multidisciplinary Engineering Science and Technology (ISSN: 3159-0040 (O)). 3(2), 3874- 3886. http://www.jmest.org/wp-content/uploads/JMESTN42351330.pdf
[8] A.O. Olorunnisola (1999). The efficiency of two Nigerian cooking stoves in handling corn cobs briquettes. Nigerian Journal of Renewable Energy (ISSN: 1115-0610 (P)). 7(1-2), 31-34.
[9] N. Kaliyan, R.V. Morey (2010). Densification characteristics of corn cobs. Fuel Processing Technology (ISSN: 0378-3820 (P)). 91, 559–565. doi:10.1016/j.fuproc.2010.01.001
[10] M. Pointner, P. Kuttner, T. Obrlik, A. Jager, H. Kahr (2014). Composition of corncobs as a substrate for fermentation of biofuels. Agronomy Research (ISSN: 1406-894X (O)). 12(2), 391–396. http://agronomy.emu.ee/wp-content/uploads/2014/05/2014_2_10_b5.pdf#abstract-3176
[11] A.O. Ogah, N.I. Elom, S.O. Ngele, P.A. Nwofe, P.E. Agbo, K.R. Englund (2015). Water absorption, thickness swelling and rheological properties of agro fibers/HDPE composites. IOSR Journal of Polymer and Textile Engineering (ISSN: 2348-019X (O) | 2348-0181 (P)). 2(3), 66-73. DOI: 10.9790/019X-023667
[12] Y.T. Lim, O.O. Park (2001). Phase morphology and rheological behaviour of polymer / layered silicate nanocomposites. Rheologia Acta (ISSN: 0035-4511 (P) | 1435-1528 (O)). 40, 220–229. https://doi.org/10.1007/s003970000126
[13] L.W. Gallagher, A.G. McDonald (2013). The effect of micron sized wood fibers in wood plastic composites. Maderas: Ciencia y Tecnologia (ISSN: 0717-3644 (P) | 0718-221X (O)). 15(3), 357-374. http://dx.doi.org/10.4067/S0718-221X2013005000028
[14] H-S. Kim, S. Kim, H-J. Kim, H-S. Yang (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta (ISSN: 0040-6031 (O)). 451(1-2), 181-189. doi:10.1016/j.tca.2006.09.013
[15] D.J. Gardner, Y. Han, L. Wang (2015). Wood-plastic composite technology. Current Forestry Reports (ISSN: 2198-6436 (O)). 1, 139-150. https://doi.org/10.1007/s40725-015-0016-6
[16] L. Wei, A.G. McDonald, C. Freitag, J.J. Morrell (2013). Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polymer Degradation and Stability (ISSN: 0141-3910 (P)). 98, 1348-1361. http://dx.doi.org/10.1016/j.polymdegradstab.2013.03.027
[17] ASTM International (ASTM D 1108-96). (2006). Standard test method for dichloromethane solubles in wood. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 04(01), 187-188. West Conshohocken, PA.
[18] ASTM International (ASTM D 1106-96). 2006. Standard test method for acid-insoluble lignin in wood. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 04(01), 183-184. West Conshohocken, PA.
[19] O.O. Adefisan, A.G. McDonald (2017). Evaluation of wood plastic composites produced from mahogany and teak. International Journal of Advanced Engineering Research and Science (ISSN: 2349-6495 (P) | 2456-1908 (O)). 4(12), 27-32. doi:10.22161/ijaers.4.12.5
[20] ASTM international (ASTM D 570-98) 2008. Standard test method for water absorption of plastics. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 08(01)35-37. West Conshohocken, PA
[21] J.S. Fabiyi, A.G. McDonald, J.J. Morrell, C. Freitag (2011). Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Composites Part A (ISSN: 1359-835X (O)). 42(5), 501–510. https://doi.org/10.1016/j.compositesa.2011.01.009
[22] ASTM international (ASTM D 790-07). 2008. Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 08(01), 151- 161. West Conshohocken, PA.
[23] ASTM international (ASTM D 1238-04c). 2008. Standard test method for melt flow rates of thermoplastics by extrusion plastometer. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 08(01), 277-290. West Conshohocken, PA.
[24] O.O. Adefisan, A.G. McDonald (2019). Evaluation of the strength, sorption and thermal properties of bamboo plastic composites. Maderas. Ciencia y tecnologia (ISSN: 0717-3644 (P) | 0718-221X (O)). 21(1), . DOI:10.4067/S0718-221X2019005XXXXXX
[25] B. Wunderlich (1973). Macromolecular physics: crystal structure, morphology, defects. Vol. 1. Academic Press: New York, NY. (ISBN-10: 0127656014 (P)) pp. 388-389.
[26] J. Kubat, M. Rigdahl, M. Welander (1990). Characterization of interfacial interactions in high density polyethylene filled with glass spheres using dynamic-mechanical analysis. Journal of Applied Polymer Science (ISSN: 0021-8995 (P)). 39(7), 1527-1539. https://doi.org/10.1002/app.1990.070390711
[27] C.M. Clemons, N.M. Stark (2009). Feasibility of using saltcedar as a filler in injection-molded polyethylene composites. Wood and Fiber Science (ISSN: 0735-6161 (P)). 41(1), 2–12.
[28] N.M. Stark, M.J. Berger (1997). Effect of species and particle size on the properties of wood-flour filled polypropylene composites. In Proc. Functional filler for thermoplastic and thermosets, Interteck conferences, San Diego, CA. December 8-10. Pp. 1-16.
[29] R. Ou, Y. Xie, M.P. Wolcott, F. Yuan, Q. Wang (2014). Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Composite Science Technology (ISSN: 0266-3538 (P)). 93, 68−75. http://dx.doi.org/10.1016/j.compscitech.2014.01.001
[30] S.V. Rangaraj, L.V. Smith (2000). Effects of moisture on the durability of a wood thermoplastic composite. Journal of Thermoplastic Composites Material (ISSN: 0892-7057 (P) | 1530-7980 (O)). 13(2), 140-161. http://journals.sagepub.com/doi/pdf/10.1177/089270570001300204
[31] S. Migneault, A. Kouba, F. Erchiqui, A. Chaala, K. Englund, C. Krause, M. Wolcott (2008). Effect of fibre length on processing and properties of extruded wood-fibre/HPDE composites. Journal of Applied Polymer Science (ISSN: 1097-4628 (O)). 110, 1085-1092. DOI: 10.1002/app.28720
[32] V. Seebauer, J. Petek, G. Staudinger (1997) Effects of particle size, heating rate and pressure on measurements of pyrolysis kinetics by thermogravimetric analysis. Fuel (ISSN: 0016-2361 (P)). 76(13), 1277-1282. https://doi.org/10.1016/S0016-2361(97)00106-3
[33] D. Harper, M.P. Wolcott (2004). Interaction between coupling agent and lubricants in wood–polypropylene composites. Composites: Part A (ISSN: 1359-835X (O)). 35, 385-394. https://doi.org/10.1016/j.compositesa.2003.09.018