Evaluation of the Flexural Strength, Sorption, Rheological and Thermal Properties of Corncob Plastic Composites

( Vol-5,Issue-12,December 2018 ) OPEN ACCESS

Olufemi O. Adefisan, Armando G. McDonald


Corncobs, flexural properties, particle size, plastic composites.


Plastic composites were made from corncobs and high density polyethylene (HDPE) by extrusion and evaluated. The composites were manufactured using two different screened corncob particle size fractions (<2 mm and <0.5 mm) and tested for flexural properties, water sorption, melt flow and thermal properties. The melt viscosities at 190oC were 18.0 ± 0.8 kPa•s (<2 mm) and 24.0 ± 0.6 kPa•s (<0.5 mm). The results obtained indicated that the composites made with the smaller particle size fraction had higher flexural strength (31.7 ± 1.7 MPa) and modulus of elasticity (1.4 ± 0.1 GPa) than those made with the larger particle size fraction (21.2 ± 1.4 MPa and 1.1 ± 0.1 GPa). Also, the composites made with the smaller particles and were more dimensionally stable. Corncob composites had thermal stability range of 259 – 274oC (onset degradation temperature). The corncob composites made with smaller sized particles possessed better properties in comparison with those made from the <2 mm. Particle size and density significantly affected the mechanical, physical and thermal properties of the composites evaluated.

ijaers doi crossref DOI:


Paper Statistics:
  • Total View : 140
  • Downloads : 25
  • Page No: 018-025
Cite this Article:
Click here to get all Styles of Citation using DOI of the article.

[1] B. Ajayi (2002). Preliminary investigation of cement bonded particleboard from maize stalk residues. The Nigerian Journal of Forestry. 33(1), 33-37.
[2] B. Ajayi (2006). Properties of maize stalk based cement bonded composites. Forest Products Journal (ISSN: 0015-7473 (P)). 56 (6), 51-55.
[3] S. Panthapulakkal, M. Sain (2007). Agro-residue reinforced high-density polyethylene composites: Fiber characterization and analysis of composite properties. Composites: Part A (ISSN: 1359-835X (P)). 38, 1445–1454. doi:10.1016/j.compositesa.2007.01.015
[4] H.O. Opara, I.O. Igwe, C.M. Ewulonu (2016). Mechanical and chemical resistance properties of high density polyethylene filled with corncob and coconut fiber. International Research Journal of Pure and Applied Chemistry (ISSN: 2231-3443). 11(2), 1-10. DOI: 10.9734/IRJPAC/2016/22902
[5] O.O. Adefisan (2011). Influence pre-treatment on the compatibility of maize cob cement mixtures. Nigerian Journal of Forestry. 41(1), 1-5.
[6] Z. Luo, P. Li, D. Cai, Q. Chen, P. Qin, T. Tan, H. Cao (2017). Comparison of performances of corn fiber plastic composites made from different parts of corn stalk. Industrial Crops and Products (ISSN: 0926-6690 (P)) 95, 521–527.
[7] A.O. Atere, A.P. Olalusi, O.J. Olukunle (2016). Physical properties of some maize varieties. Journal of Multidisciplinary Engineering Science and Technology (ISSN: 3159-0040 (O)). 3(2), 3874- 3886.
[8] A.O. Olorunnisola (1999). The efficiency of two Nigerian cooking stoves in handling corn cobs briquettes. Nigerian Journal of Renewable Energy (ISSN: 1115-0610 (P)). 7(1-2), 31-34.
[9] N. Kaliyan, R.V. Morey (2010). Densification characteristics of corn cobs. Fuel Processing Technology (ISSN: 0378-3820 (P)). 91, 559–565. doi:10.1016/j.fuproc.2010.01.001
[10] M. Pointner, P. Kuttner, T. Obrlik, A. Jager, H. Kahr (2014). Composition of corncobs as a substrate for fermentation of biofuels. Agronomy Research (ISSN: 1406-894X (O)). 12(2), 391–396.
[11] A.O. Ogah, N.I. Elom, S.O. Ngele, P.A. Nwofe, P.E. Agbo, K.R. Englund (2015). Water absorption, thickness swelling and rheological properties of agro fibers/HDPE composites. IOSR Journal of Polymer and Textile Engineering (ISSN: 2348-019X (O) | 2348-0181 (P)). 2(3), 66-73. DOI: 10.9790/019X-023667
[12] Y.T. Lim, O.O. Park (2001). Phase morphology and rheological behaviour of polymer / layered silicate nanocomposites. Rheologia Acta (ISSN: 0035-4511 (P) | 1435-1528 (O)). 40, 220–229.
[13] L.W. Gallagher, A.G. McDonald (2013). The effect of micron sized wood fibers in wood plastic composites. Maderas: Ciencia y Tecnologia (ISSN: 0717-3644 (P) | 0718-221X (O)). 15(3), 357-374.
[14] H-S. Kim, S. Kim, H-J. Kim, H-S. Yang (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta (ISSN: 0040-6031 (O)). 451(1-2), 181-189. doi:10.1016/j.tca.2006.09.013
[15] D.J. Gardner, Y. Han, L. Wang (2015). Wood-plastic composite technology. Current Forestry Reports (ISSN: 2198-6436 (O)). 1, 139-150.
[16] L. Wei, A.G. McDonald, C. Freitag, J.J. Morrell (2013). Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polymer Degradation and Stability (ISSN: 0141-3910 (P)). 98, 1348-1361.
[17] ASTM International (ASTM D 1108-96). (2006). Standard test method for dichloromethane solubles in wood. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 04(01), 187-188. West Conshohocken, PA.
[18] ASTM International (ASTM D 1106-96). 2006. Standard test method for acid-insoluble lignin in wood. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 04(01), 183-184. West Conshohocken, PA.
[19] O.O. Adefisan, A.G. McDonald (2017). Evaluation of wood plastic composites produced from mahogany and teak. International Journal of Advanced Engineering Research and Science (ISSN: 2349-6495 (P) | 2456-1908 (O)). 4(12), 27-32. doi:10.22161/ijaers.4.12.5
[20] ASTM international (ASTM D 570-98) 2008. Standard test method for water absorption of plastics. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 08(01)35-37. West Conshohocken, PA
[21] J.S. Fabiyi, A.G. McDonald, J.J. Morrell, C. Freitag (2011). Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Composites Part A (ISSN: 1359-835X (O)). 42(5), 501–510.
[22] ASTM international (ASTM D 790-07). 2008. Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 08(01), 151- 161. West Conshohocken, PA.
[23] ASTM international (ASTM D 1238-04c). 2008. Standard test method for melt flow rates of thermoplastics by extrusion plastometer. In Annual book of ASTM standards (ISSN: 0192-2998 (P)). 08(01), 277-290. West Conshohocken, PA.
[24] O.O. Adefisan, A.G. McDonald (2019). Evaluation of the strength, sorption and thermal properties of bamboo plastic composites. Maderas. Ciencia y tecnologia (ISSN: 0717-3644 (P) | 0718-221X (O)). 21(1), . DOI:10.4067/S0718-221X2019005XXXXXX
[25] B. Wunderlich (1973). Macromolecular physics: crystal structure, morphology, defects. Vol. 1. Academic Press: New York, NY. (ISBN-10: 0127656014 (P)) pp. 388-389.
[26] J. Kubat, M. Rigdahl, M. Welander (1990). Characterization of interfacial interactions in high density polyethylene filled with glass spheres using dynamic-mechanical analysis. Journal of Applied Polymer Science (ISSN: 0021-8995 (P)). 39(7), 1527-1539.
[27] C.M. Clemons, N.M. Stark (2009). Feasibility of using saltcedar as a filler in injection-molded polyethylene composites. Wood and Fiber Science (ISSN: 0735-6161 (P)). 41(1), 2–12.
[28] N.M. Stark, M.J. Berger (1997). Effect of species and particle size on the properties of wood-flour filled polypropylene composites. In Proc. Functional filler for thermoplastic and thermosets, Interteck conferences, San Diego, CA. December 8-10. Pp. 1-16.
[29] R. Ou, Y. Xie, M.P. Wolcott, F. Yuan, Q. Wang (2014). Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Composite Science Technology (ISSN: 0266-3538 (P)). 93, 68−75.
[30] S.V. Rangaraj, L.V. Smith (2000). Effects of moisture on the durability of a wood thermoplastic composite. Journal of Thermoplastic Composites Material (ISSN: 0892-7057 (P) | 1530-7980 (O)). 13(2), 140-161.
[31] S. Migneault, A. Kouba, F. Erchiqui, A. Chaala, K. Englund, C. Krause, M. Wolcott (2008). Effect of fibre length on processing and properties of extruded wood-fibre/HPDE composites. Journal of Applied Polymer Science (ISSN: 1097-4628 (O)). 110, 1085-1092. DOI: 10.1002/app.28720
[32] V. Seebauer, J. Petek, G. Staudinger (1997) Effects of particle size, heating rate and pressure on measurements of pyrolysis kinetics by thermogravimetric analysis. Fuel (ISSN: 0016-2361 (P)). 76(13), 1277-1282.
[33] D. Harper, M.P. Wolcott (2004). Interaction between coupling agent and lubricants in wood–polypropylene composites. Composites: Part A (ISSN: 1359-835X (O)). 35, 385-394.