Statistics

    Map

Twitter

Fuzzy Method for in Control Acetaldehyde Generation in Resin Pet in the Process of Packaging Pre-Forms of Plastic Injection
( Vol-5,Issue-8,August 2018 )
Author(s):

Carlos Alberto Monteiro, Emanuel Negrão Macêdo, Manoel Henrique Reis Nascimento, Carlos Alberto Oliveira de Freitas, Jorge de Almeida Brito Junior

Keywords:

Packaging, Fuzzy Logic, Inference Rules, Computational Intelligence, PET, Acetaldehyde.

Abstract:

In order to control the drying temperature of the PET resin in the silo of the plastic injection molding machine, during the plastic injection process in the industries producing preforms for the manufacture of beverage bottles, care is taken in the ideal temperature regulation for the better performance in controlling the generation of Acetaldehyde (AA), which alters the taste of carbonated or non-carbonated drinks, providing a citrus nuance to the palate and questioning the quality of the packaged products The objective of this work is to develop a tool based on Fuzzy logic to support the control of the drying temperature of PET resin, allowing specialists to make the ideal temperature control decisions necessary to control the generation of Acetaldehyde (AA). For the development of the proposed Fuzzy inference model, we used the Matlab Fuzzy toolbox tool, where the input variables, the fuzzyfication rules and the output variable were implemented based on the data collected from the preform injection process. From the inference model, we obtained a more precise management of the variables that influence the generation of AA, estimating a reduction of $ 240,044.00 in annual costs in the production of preforms.

ijaers doi crossref DOI:

10.22161/ijaers.5.8.29

Paper Statistics:
  • Total View : 108
  • Downloads : 18
  • Page No: 237-248
Cite this Article:
MLA
Carlos Alberto Monteiro et al ."Fuzzy Method for in Control Acetaldehyde Generation in Resin Pet in the Process of Packaging Pre-Forms of Plastic Injection". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 8, 2018, pp.237-248 AI Publications, doi:10.22161/ijaers.5.8.29
APA
Carlos Alberto Monteiro, Emanuel Negrão Macêdo, Manoel Henrique Reis Nascimento, Carlos Alberto Oliveira de Freitas, Jorge de Almeida Brito Junior(2018).Fuzzy Method for in Control Acetaldehyde Generation in Resin Pet in the Process of Packaging Pre-Forms of Plastic Injection. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(8), 237-248. http://dx.doi.org/10.22161/ijaers.5.8.29
Chicago
Carlos Alberto Monteiro, Emanuel Negrão Macêdo, Manoel Henrique Reis Nascimento, Carlos Alberto Oliveira de Freitas, Jorge de Almeida Brito Junior. 2018,"Fuzzy Method for in Control Acetaldehyde Generation in Resin Pet in the Process of Packaging Pre-Forms of Plastic Injection". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(8):237-248. Doi: 10.22161/ijaers.5.8.29
Harvard
Carlos Alberto Monteiro, Emanuel Negrão Macêdo, Manoel Henrique Reis Nascimento, Carlos Alberto Oliveira de Freitas, Jorge de Almeida Brito Junior. 2018,Fuzzy Method for in Control Acetaldehyde Generation in Resin Pet in the Process of Packaging Pre-Forms of Plastic Injection, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(8), pp:237-248
IEEE
Carlos Alberto Monteiro, Emanuel Negrão Macêdo, Manoel Henrique Reis Nascimento, Carlos Alberto Oliveira de Freitas, Jorge de Almeida Brito Junior."Fuzzy Method for in Control Acetaldehyde Generation in Resin Pet in the Process of Packaging Pre-Forms of Plastic Injection", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 8, pp.237-248,2018.
Bibtex
@article {carlosalbertomonteiro2018fuzzy,
title={Fuzzy Method for in Control Acetaldehyde Generation in Resin Pet in the Process of Packaging Pre-Forms of Plastic Injection},
author={Carlos Alberto Monteiro, Emanuel Negrão Macêdo, Manoel Henrique Reis Nascimento, Carlos Alberto Oliveira de Freitas, Jorge de Almeida Brito Junior},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] ANJOS, C. A. R. (2007). INFLUENCE OF THE PROCESS IN THE GENERATION OF ACETALDEHYDE AND RESIDUAL LEVELS IN POLY (ETHYLENE TEREPHTHALATE) (PET) PACKAGING AND DRINKS. Revista Brasileira de engenharia de Biossistemas, 3, 277 - 290.
[2] ARIF, M. F., Anoraga, B., Handoyo, S., & Nasir, H. (2016). Algorithm Apriori Association Rule in Determination of Fuzzy Rule Based on Comparison of Fuzzy Inference System (FIS) Mamdani Method and Sugeno Method. Business Management and Strategy, 7.
[3] BACH, C., Dauchy, X., Chagnon, M.-C., & Etienne, S. (2012). Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed. Water Research, 46(3), 571-583. doi: https://doi.org/10.1016/j.watres.2011.11.062
[4] BOBILLO, F., & STRACCIA, U. (2017). Generalizing type-2 fuzzy ontologies and type-2 fuzzy description logics. International Journal of Approximate Reasoning, 87(Supplement C), 40-66. doi: https://doi.org/10.1016/j.ijar.2017.04.012
[5] CHAVES, M. L., Márquez, J. J., Pérez, H., Sánchez, L., & Vizan, A. (2018). Intelligent Decision System Based on Fuzzy Logic Expert System to Improve Plastic Injection Molding Process. In H. Pérez García, J. Alfonso-Cendón, L. Sánchez González, H. Quintián & E. Corchado (Eds.), International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding (pp. 57-67). Cham: Springer International Publishing.
[6] CHEN, X., LAM, Y. C., & LI, D. Q. (2000). Analysis of thermal residual stress in plastic injection molding. Journal of Materials Processing Technology.
[7] EWENDER, J., & WELLE, F. (2008). Determination of the Migration of Acetaldehyde from PET Bottles into Noncarbonated and Carbonated Mineral Water. Fraunhofer Institute for Process Engineering and Packaging (IVV), Giggenhauser Straße 35, 85354 Freising, Germany,.
[8] GHISOLFI, M. E. (2009). M&G - Manual Técnico Resina PET. M&G Polímeros Brasil S.A.
[9] LABATI, R. D., Genovese, A., Munoz, E., Piuri, V., Scotti, F., & Sforza, G. (2016). Computational Intelligence for Industrial and Environmental Applications. IEEE 8th International Conference on Intelligent Systems.
[10] LEE, C. C. (1990). Fuzzy Logic in Control Systems: Fuzzy Logic Controller. IEEE International Conference on Fuzzy Systems (FUZZ).
[11] MUÑOS, M., & MIRANDA, E. (2016). A Fuzzy System for Estimating Premium Cost of Option Exchange Using Mamdani Inference. IEEE International Conference on Fuzzy Systems (FUZZ).
[12] NIJSSEN, B., KAMPERMAN, T., & JETTEN, J. (1996). Acetaldehyde in Mineral Water Stored in Polyethylene Terephthalate (PET) Bottles: Odour Threshold and Quantification. PACKAGING TECHNOLOGY AND SCIENCE.
[13] NOGUEIRA, E. L., & NASCIMENTO, M. H. R. (2017). Inventory control applying sales demand prevision based on fuzzy inference system. Journal of Engineering and Technology for Industrial Applications (JETIA), Vol: 03.
[14] ÖZLEM, K. E. (2008). Acetaldehyde migration from polyethylene terephthalate bottles into carbonated beverages in Türkiye. International Journal of Food Science & Technology, 43(2), 333-338. doi: 10.1111/j.1365-2621.2006.01443.x
[15] PIRA, S. (2017). Sustainability and lightweighting are key areas in the developing PET packaging market. https://www.smitherspira.com/resources/2017/april/key-areas-in-pet-packaging.
[16] POURJAVAD, E., & MAYORGA, R. V. (2017). A comparative study and measuring performance of manufacturing systems with Mamdani fuzzy inference system. Journal of Intelligent Manufacturing.
[17] ROBLES, E. O., Vazquez, J. L. G., Castro, J. R., & Castillo, O. (2016). A hardware architecture for real-time edge detection based on interval type-2 fuzzy logic. IEEE.
[18] ROSATO, D. V., DONALD, V., & MATTHEWS, V. (2004). Plastic Product Material and Process Selection Handbook. 2. Ed. Elsieveier Science & Tecnology Books, 2004.
[19] ZADEH, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi: https://doi.org/10.1016/S0019-9958(65)90241-X