Index Set Green Cover Method for Automated Identification of Vegetation

( Vol-5,Issue-8,August 2018 ) OPEN ACCESS

Denison Lima Correa, Marcelo Augusto Machado Vasconcelos, Paulo Celso Santiago Bittencourt, Jorleide Rodrigues


Geotechnology, Drone, Mapping, Vegetation.


The objective of this study was to generate a new methodology for the generation of vegetation index by drone cameras for the quantification of green cover area. For this study a drone of the DJI Mavic PRO quadricopter model was used. The flight plan was made using the Drone Deploy application and a total of 56 images were obtained, with a 60% side cover and 70% front cover. The images were processed in the professional Photoscan software version (1.4.2) resulting in mosaic area. The following ICVA equation was applied: ((pGreen-pRed / pGreen + pRed) * L) through the map algebra of ArcGis 10.3. The vegetation index was thus generated, without the need to use satellite images or multispectral data and thus generates a new way of identifying vegetation with the use of drones, Vants and RPAs, being a landmark in the advancement of studies of geotechnologies. The equation used will still be tested in new areas and different situations to show its capacity, and if necessary will be improved according to the observations made.

ijaers doi crossref DOI:


Paper Statistics:
  • Total View : 366
  • Downloads : 35
  • Page No: 083-086
Cite this Article:
Click here to get all Styles of Citation using DOI of the article.

[1] ABER, J. S.; MARZOLFF, I.; RIES, J. B. (2010) Small-format aerial photography principles, techniques and geoscience applications. Amsterdam: Elsevier Science, 268 p. ISBN: 978-0-444-63823-6.
[2] CLAY,D.E.; SCHUELLER,J.K.;MILLER,W.M; WHITNEY,J.D.; CORNELL,J.A. (2014) Error sources affecting variable rate application on nitrogen fertilizer, Precision Agriculture, New York, v. 5, p 601-6016.
[3] CHANG, J. D.; YU, S. S.; CHEN, H. H.; TSAI, C. S. (2010). HSV-based color texture image classification using wavelet transform and motif patterns. Journal of Computers, v. 20, n. 4, p. 63–69.
[4] NEVES, M. N.; JÚNIOR O. R. N.; LUIZ. A. J. B. ; SANCHES, I. D. (2017). Índice de cobertura verde para imagens de altíssima resolução. Anais do XVIII Simpósio Brasileiro de Sensoriamento Remoto –SBSR 28 a 31 de Maio de 2017. INPE Santos - SP, Brasil. ISBN: 978-85-17-00088-1
[5] MEIER, L. PIXHAWK. (2018).Computer vision and geometry lab. Disponível em: . Acesso em: 16 maio. 2018.
[6] MARTIN,K.L;MALZER,G.L;MULLA,D.J;HUGGINS,D.R;STROCK, J. (2003) Spatial and Temporal Variation in Economically Optimum Nitrogen Rate for Corn. Agronomy Journal, Madison, v. 95, n. 4 , p. 958-964.
[7] MELO, A.C.G.; REIS, C.M.; RESENDE, R.U (2010). Guia para Monitoramento de Reflorestamentos para Restauração. Circular Técnica 1 Projetos Mata Ciliar, São Paulo: Secretaria de Meio Ambiente, n. 1, 10 p.
[8] RAMOS, J. J. G.; BUENO S. S. (2007) Uma proposta para uma rede de ensino, pesquisa e desenvolvimento em veículos robóticos aéreos. In: Simpósio Brasileiro de Automação Inteligente (SBAI), 8., Florianópolis, SC.Anais. Campinas: SBA, 2007. Disponível em: . Acesso em: 16 maio. 2018.
[9] TEAL,R.K;TUBANA,B.;GIRMA,K.;FREAMAN,K.W.;ARNALL,D.B;WALSH,O.;RAUN, W.R. (2008). In-Season Prediction of Corn Grain Yield Potential Using Normalized Difference Vegetation Index. Adronomy Journal, Madison, v.98, n6, p. 1488-1494.