Melatonin bioengineered: A New Possible Strategy for Treatment of Breast Cancer

( Vol-5,Issue-10,October 2018 ) OPEN ACCESS

Rubian Trindade da Silva Fernandes, Aron Carlos de Melo Cotrim, Eduardo Luzía França, Adenilda Cristina Honorio-França, Inês Aparecida Tozetti


colostrum, melatonin, polyethylene glycol, breast cancer, bioengineering.


Breast cancer is an important public health problem, with an estimated 3.2 million new cases by the year 2050. Diet plays a key role in the etiology of breast cancer and breastfeeding is associated with a lower incidence of breast cancer. On the other hand, the improvement of the therapeutic properties of bioactive compounds through their incorporation into microcarriers is an important strategy in obtaining new therapies, since cyclical changes in concentration are eliminated; there is biological availability of the compound as well as the reduction in toxicity, number dose and suppression of adverse reactions. Studies using hormones such as melatonin extracted from human milk adsorbed onto polyethylene glycol (PEG) microspheres showed that the controlled release of this compound was able to reduce viability and induce apoptosis in MCF-7 cell lines. Colostrum differs from most of the secretions because it contains viable leukocytes during the first days of lactation with a quantity and activity comparable to blood leukocytes, and has several defense components such as antibodies and hormones, such as melatonin (MLT). This review details the influence of the soluble and cellular components present in human colostrum, such as the MLT hormone, as the modified release systems influence the action of MLT and the possible mechanisms involved that contribute to the hypothesis of reduction of breast cancer in women who breastfed.

ijaers doi crossref DOI:


Paper Statistics:
  • Total View : 210
  • Downloads : 61
  • Page No: 009-018
Cite this Article:
Click here to get all Styles of Citation using DOI of the article.

[1] Ghoncheh, M., Pournamdar, Z., & Salehiniya, H. (2016). Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev, 17(S3), 43-6.
[2] Tas, F., Hansel, H., Belce, A., Ilvan, S., Argon, A., Camlica, H., & Topuz, E. (2005). Oxidative stress in breast cancer. Medical Oncology, 22(1), 11.
[3] Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked?. Free Radical Biology and Medicine, 49(11), 1603-1616.
[4] Gradim, C. V. C., Magalhães, M. C., Faria, M. D. C. F., & Arantes, C. I. S. (2011). Aleitamento materno como fator de proteção para o câncer de mama. Revista da Rede de Enfermagem do Nordeste, 12(2).
[5] Honorio‐França, A. C., Carvalho, M. P. S. M., Isaac, L., Trabulsi, L. R., & Carneiro‐Sampaio, M. M. S. (1997). Colostral mononuclear phagocytes are able to kill enteropathogenic Escherichia coli opsonized with colostral IgA. Scandinavian Journal of Immunology, 46(1), 59-66.
[6] Honorio-França, A. C., Launay, P., Carneiro-Sampaio, M. M. S., Monteiro, R. C. (2001) Colostral neutrophils express IgA Fc receptors (CD89) lacking y chain association that mediate non-inflammatory properties of secretory IgA. Journal of Leukocyte Biology, 69(2), 289-296.
[7] França, E. L., Feliciano, N. D., Silva, K. A., Ferrari, C. K., & Honorio-França, A. C. (2009). Modulatory role of melatonin on superoxide release by spleen macrophages isolated from alloxan-induced diabetic rats. Bratisl Lek Listy, 110(9), 517-22.
[8] Morceli, G., Honorio-França, A. C., Fagundes, D. L., Calderon, I. M., & França, E. L. (2013). Antioxidant effect of melatonin on the functional activity of colostral phagocytes in diabetic women. PLoS One, 8(2), e56915.
[9] França-Botelho, A. C., França, J. L., Oliveira, F. M., Franca, E. L., Honório-França, A. C., Caliari, M. V., & Gomes, M. A. (2011). Melatonin reduces the severity of experimental amoebiasis. Parasites & vectors, 4(1), 62.
[10] Korkmaz, A., Topal, T., Tan, D. X., & Reiter, R. J. (2009). Role of melatonin in metabolic regulation. Reviews in Endocrine and Metabolic Disorders, 10(4), 261-270.
[11] França, E. L., Honorio-França, A. C., da Silva Fernandes, R. T., Marins, C. M. F., de Souza Pereira, C. C., & de Pilla Varotti, F. (2016). The effect of melatonin adsorbed to polyethylene glycol microspheres on the survival of MCF-7 cells. Neuroimmunomodulation, 23(1), 27-32.
[12] Honorio-França, A. C., Nunes, G. T., Fagundes, D. L. G., de Marchi, P. G. F., da Silva Fernandes, R. T., França, J. L., ... & França, E. L. (2016). Intracellular calcium is a target of modulation of apoptosis in MCF-7 cells in the presence of IgA adsorbed to polyethylene glycol. OncoTargets and therapy, 9, 617.
[13] Scherer, E. F., Honorio-França, A. C, Hara, C. C.P., Reinaque, A P.B., Côrtes, M. A.,França, E.L,. (2011). Immunomodulatory effects of poly (ethylene glycol) microspheres adsorbed with nanofractions of Momordica charantia L. on diabetic human blood phagocytes. Science of Advanced Materials, 3(5), 687-694.
[14] Reinaque, A. P. B., França, E. L., Scherer, E. F., Côrtes, M. A., Souto, F. J. D., & Honorio-França, A. C. (2012). Natural material adsorbed onto a polymer to enhance immune function. Drug design, development and therapy, 6, 209.
[15] Fagundes, D.G., França, E.L., Hara, C.C.P., Honorio-França, A.C. (2012). Immunomodulatory effects of poly (Etilene Glicol) Microspheres adsorbed with cortisol on activity of colostrum phagocytes. International Journal of Pharmacology. 1(6) 510-518.
[16] Guimarães, P. C. L., Honorio-França, A. C., Hara, C. D. C. P., Fagundes, D. L. G., Ratto, S. H. B., & França, E. L. (2013). Modulation of human colostrum phagocyte activity by the glycine-adsorbed polyethylene glycol microspheres. Journal of Chemistry, 2013.
[17] Hara, C. D. C. P., Honorio-França, A. C., Fagundes, D. L. G., Guimarães, P. C. L., & França, E. L. (2013). Melatonin nanoparticles adsorbed to polyethylene glycol microspheres as activators of human colostrum macrophages. Journal of Nanomaterials, 2013.
[18] Jevševar, S., Kunstelj, M., & Porekar, V. G. (2010). PEGylation of therapeutic proteins. Biotechnology Journal: Healthcare Nutrition Technology, 5(1), 113-128.
[19] Yu, D., Peng, P., Dharap, S. S., Wang, Y., Mehlig, M., Chandna, P., ... & Borchard, G. (2005). Antitumor activity of poly (ethylene glycol)–camptothecin conjugate: The inhibition of tumor growth in vivo. Journal of Controlled Release, 110(1), 90-102.
[20] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.
[21] Nicholson, D. W. (2000). From bench to clinic with apoptosis-based therapeutic agents. Nature, 407(6805), 810.
[22] Wong, R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research, 30(1), 87.
[23] INCA, 2018. Estimativa 2018: incidência de câncer no Brasil / Instituto Nacional de Câncer José Alencar Gomes da Silva. Coordenação de Prevenção e Vigilância. – Rio de Janeiro: INCA, 2018.
[24] Tao, Z., Shi, A., Lu, C., Song, T., Zhang, Z., & Zhao, J. (2015). Breast cancer: epidemiology and etiology. Cell biochemistry and biophysics, 72(2), 333-338.
[25] INCA, 2016. Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA). Ministério da Saúde. Estimativa 2016: incidência de câncer no Brasil.
[26] Richie, R. C., & Swanson, J. O. (2003). Breast cancer: a review of the literature. Journal of Insurance Medicine-New York Then Denver, 35(2), 85-101.
[27] Parton, M., Dowsett, M., & Smith, I. (2001). Studies of apoptosis in breast cancer. BMJ: British Medical Journal, 322(7301), 1528.
[28] Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., & Sharma, K. K. (2010). Various types and management of breast cancer: an overview. Journal of advanced pharmaceutical technology & research, 1(2), 109.
[29] DeNardo, D. G., & Coussens, L. M. (2007). Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Research, 9(4), 212.
[30] Macchetti, A. H., Marana, H. R. C., Silva, J. S., Andrade, J. M. D., Ribeiro-Silva, A., & Bighetti, S. (2006). Tumor-infiltrating CD4+ T lymphocytes in early breast cancer reflect lymph node involvement. Clinics, 61(3), 203-208.
[31] Soule, H. D., Vazquez, J., Long, A., Albert, S., & Brennan, M. (1973). A human cell line from a pleural effusion derived from a breast carcinoma. Journal of the National Cancer Institute, 51(5), 1409-1416.
[32] Comşa, Ş., Cîmpean, A. M., & Raica, M. (2015). The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer research, 35(6), 3147-3154.
[33] Parodi, P. W. (2007). A role for milk proteins and their peptides in cancer prevention. Current pharmaceutical design, 13(8), 813-828.
[34] Klaunig, J. E., Xu, Y., Isenberg, J. S., Bachowski, S., Kolaja, K. L., Jiang, J., ... & Walborg Jr, E. F. (1998). The role of oxidative stress in chemical carcinogenesis. Environmental health perspectives, 106(Suppl 1), 289.
[35] Pinheiro, A. B., Lauter, D. S., Medeiros, G. C., Cardozo, I. R., Menezes, L. M., Souza, R. M. B. D., Abrahão, K.; Casado, L.; Bergman, A.; Thuler, L. C. (2013). Câncer de mama em mulheres jovens: análise de 12.689 casos. Rev. Bras. Cancerol. (Online), 59(3), 351-359.
[36] Franca-Botelho, A. D. C., Ferreira, M. C., Franca, J. L., Franca, E. L., & Honorio-Franca, A. C. (2012). Breastfeeding and its relationship with reduction of breast cancer: a review. Asian Pacific Journal of Cancer Prevention, 13(11), 5327-5332.
[37] França,E.L., França-Botelho, A.C., França, J.L,, Ferrari, C.K., Honorio-Franca ,A.C.(2013). Repercussions of Breastfeeding for Diabetes and Breast Cancer. Asian Pacific Journal of Cancer Prevention (14) 6233-6239.
[38] Davis, M. K. (2001). Breastfeeding and chronic disease in childhood and adolescence. Pediatric Clinics of North America, 48(1), 125-141.
[39] Kent, J. C. (2007). How breastfeeding works. The Journal of Midwifery & Women’s Health, 52(6), 564-570.
[40] Barnett, G. C., Shah, M., Redman, K., Easton, D. F., Ponder, B. A., & Pharoah, P. D. (2008). Risk factors for the incidence of breast cancer: do they affect survival from the disease? Journal of Clinical Oncology, 26(20), 3310-3316.
[41] Alsaker, M. D., Opdahl, S., Åsvold, B. O., Romundstad, P. R., & Vatten, L. J. (2011). The association of reproductive factors and breastfeeding with long term survival from breast cancer. Breast cancer research and treatment, 130(1), 175-182.
[42] Russo, J., Moral, R., Balogh, G. A., Mailo, D., & Russo, I. H. (2005). The protective role of pregnancy in breast cancer. Breast Cancer Research, 7(3), 131.
[43] Russo, J., Balogh, G. A., & Russo, I. H. (2008). Full-term pregnancy induces a specific genomic signature in the human breast. Cancer Epidemiology and Prevention Biomarkers, 17(1), 51-66.
[44] Yang, L., & Jacobsen, K. H. (2008). A systematic review of the association between breastfeeding and breast cancer. Journal of women's health, 17(10), 1635-1645.
[45] Ip, S,. Chung, M., Raman, G., Chew, P., Magula, N., Trikalinos, T., & Lau, J. (2007). Breastfeeding and maternal and infant health outcomes in developed countries. Evid Technol Asses (Full Rep), 153(153), 1-186.
[46] Lipworth, L., Bailey, L. R., & Trichopoulos, D. (2000). History of breast-feeding in relation to breast cancer risk: a review of the epidemiologic literature. Journal of the National Cancer Institute, 92(4), 302-312.
[47] Romieu, I., Hernandez-Avila, M., Lazcano, E., Lopez, L., & Romero-Jaime, R. (1996). Breast cancer and lactation history in Mexican women. American journal of epidemiology, 143(6), 543-552.
[48] Goldman, A. S. (2002). Evolution of the mammary gland defense system and the ontogeny of the immune system. Journal of mammary gland biology and neoplasia, 7(3), 277-289.
[49]Islam, S. N., Ahmed, L., Khan, M. N. I., Huque, S., Begum, A., & Yunus, A. B. M. (2006). Immune components (IgA, IgM, IgG, immune cells) of colostrum of Bangladeshi mothers. Pediatrics international, 48(6), 543-548.
[50] Brandtzaeg, P. (2010). The mucosal immune system and its integration with the mammary glands. The Journal of pediatrics, 156(2), S8-S15.
[51] Meki, A. R. M., Saleem, T. H., Al-Ghazali, M. H., & Sayed, A. A. (2003). Interleukins-6,-8 and-10 and tumor necrosis factor-alpha and its soluble receptor I in human milk at different periods of lactation. Nutrition research, 23(7), 845-855.
[52] Lönnerdal, B. (2003). Nutritional and physiologic significance of human milk proteins. The American journal of clinical nutrition, 77(6), 1537S-1543S.
[53] Kverka, M., Burianova, J., Lodinova-Zadnikova, R., Kocourkova, I., Cinova, J., Tuckova, L., & Tlaskalova-Hogenova, H. (2007). Cytokine profiling in human colostrum and milk by protein array. Clinical chemistry, 53(5), 955-962.
[54] Garofalo, R. (2010). Cytokines in human milk. The Journal of pediatrics, 156(2), S36-S40.
[55] Honorio-França, A.C., Launay, P., Carneiro-Sampaio, M.M., Monteiro, R.C. (2001). Colostral neutrophils express Fc alpha receptors (CD89) lacking gamma chain association and mediate noninflammatory properties of secretory IgA. Journal of Leukocyte Biology ,69(2):289-96.
[56] Monteiro, R. C., & Van De Winkel, J. G. (2003). IgA Fc receptors. Annual review of immunology, 21(1), 177-204.
[57] Newburg, D. S. (2005). Innate immunity and human milk. The Journal of nutrition, 135(5), 1308-1312.
[58] Friel, J. K., Tsopmo, A., Diehl-Jones, B., & Aluko, R. (2008). Antioxidant Properties of Human Milk Fractions. The journal of the Federation of American societies for Experimental biology, 22(1), 446, 2008.
[59] Lönnerdal, B. (2000). Breast milk: a truly functional food. Nutrition, 16(7/8), 509-511.
[60] Miralles, O., Sánchez, J., Palou, A., & Picó, C. (2006). A physiological role of breast milk leptin in body weight control in developing infants. Obesity, 14(8), 1371-1377.
[61] García-Mauriño, S., Pozo, D., Carrillo-Vito, A., Calvo, J.R., Guerrero, J. M.(1999) Melatonin activates Th1 lymphocytes by increasing IL-12 production. Life sciences, 65(20), 2143-2150.
[62] Pontes, G. N., Cardoso, E. C., Carneiro‐Sampaio, M. M., & Markus, R. P. (2006). Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes)–melatonin in human colostrum and colostrum phagocytes. Journal of pineal research, 41(2), 136-141.
[63] Pontes, G. N., Cardoso, E. C., Carneiro‐Sampaio, M. M., & Markus, R. P. (2007). Pineal melatonin and the innate immune response: the TNF‐α increase after cesarean section suppresses nocturnal melatonin production. Journal of pineal research, 43(4), 365-371.
[64] Pires‐Lapa, M. A., Tamura, E. K., Salustiano, E. M., & Markus, R. P. (2013). Melatonin synthesis in human colostrum mononuclear cells enhances dectin‐1‐mediated phagocytosis by mononuclear cells. Journal of pineal research, 55(3), 240-246.
[65] Claustrat, B., Brun, J., & Chazot, G. (2005). The basic physiology and pathophysiology of melatonin. Sleep medicine reviews, 9(1), 11-24.
[66] Reiter, R. J., Tan, D. X., Korkmaz, A., & Rosales-Corral, S. A. (2013). Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Human reproduction update, 20(2), 293-307.
[67] Reiter, R. J., Tan, D. X., & Galano, A. (2014). Melatonin: exceeding expectations. Physiology, 29(5), 325-333.
[68] Honorio-Franca, A. C., Hara, C. C. P., Ormonde, J. V. S., Nunes, G. T., & Franca, E. L. (2013). Human colostrum melatonin exhibits a day-night variation and modulates the activity of colostral phagocytes. Journal of Applied Biomedicine, 11(3), 153-162.
[69] Carrillo-Vico, A., Calvo, J. R., Abreu, P., Lardone, P. J., García-Mauriño, S., Reiter, R. J., & Guerrero, J. M. (2004). Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. The FASEB Journal, 18(3), 537-539.
[70] Reiter, R. J., Tan, D. X., & Galano, A. (2014). Melatonin: exceeding expectations. Physiology, 29(5), 325-333.
[71] Tan, D. X., Manchester, L. C., Terron, M. P., Flores, L. J., & Reiter, R. J. (2007). One molecule, many derivatives: a never‐ending interaction of melatonin with reactive oxygen and nitrogen species?. Journal of pineal research, 42(1), 28-42.
[72] Maldonado, M. D., García‐Moreno, H., González‐Yanes, C., & Calvo, J. R. (2016). Possible involvement of the inhibition of NF‐κB factor in anti‐inflammatory actions that melatonin exerts on mast cells. Journal of cellular biochemistry, 117(8), 1926-1933.
[73] Vijayalaxmi, Reiter, R. J., Tan, D. X., Herman, T. S., & Thomas Jr, C. R. (2004). Melatonin as a radioprotective agent: a review. International Journal of Radiation Oncology* Biology* Physics, 59(3), 639-653.
[74] Cos, S., Fernández, R., Güézmes, A., & Sánchez-Barceló, E. J. (1998). Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer research, 58(19), 4383-4390.
[75] Cos, S., Mediavilla, M. D., Fernández, R., González‐Lamuño, D., & Sánchez‐Barceló, E. J. (2002). Does melatonin induce apoptosis in MCF‐7 human breast cancer cells in vitro? Journal of pineal research, 32(2), 90-96.
[76] Rögelsperger, O., Ekmekcioglu, C., Jäger, W., Klimpfinger, M., Königsberg, R., Krenbek, D., ... & Thalhammer, T. (2009). Coexpression of the melatonin receptor 1 and nestin in human breast cancer specimens. Journal of pineal research, 46(4), 422-432.
[77] Hill, S. M., Frasch, T., Xiang, S., Yuan, L., Duplessis, T., & Mao, L. (2009). Molecular mechanisms of melatonin anticancer effects. Integrative cancer therapies, 8(4), 337-346.
[78] VERMA, R. K., GARG, S. (2001). Current status of drug delivery technologies and future directions. Pharmaceutical Technology.25(2)1-14.
[79] Gil, E. C., Colarte, A. I., Bataille, B., Pedraz, J. L., Rodríguez, F., & Heinämäki, J. (2006). Development and optimization of a novel sustained-release dextran tablet formulation for propranolol hydrochloride. International journal of pharmaceutics, 317(1), 32-39.
[80] Batista, C. M., de Carvalho, C. M. B., & Magalhães, N. S. S. (2007). Lipossomas e suas aplicações terapêuticas: Estado da arte. Revista Brasileira de Ciências Farmacêuticas, 43(2), 167-179.
[81] Kreuter, J. (2007). Nanoparticles- a historical perspective. International Journal of Pharmaceutics, 331(1), 1-10.
[82] Grabovac, V., Föger, F., & Bernkop-Schnürch, A. (2008). Design and in vivo evaluation of a patch delivery system for insulin based on thiolated polymers. International journal of pharmaceutics, 348(1-2), 169-174.
[83] Hernandes, M. R. G., Moraes, L. C. A., Ribeiro, E. B., Fagundes, D. L. G., Honorio-França, A. C., & França, E. L. (2017). In vitro immunomodulatory effects of microemulsions with levamisole delivery systems on blood phagocytes interacting with Giardia lamblia. Parasitology international, 66(3), 299-304.
[84] Alagusundaram, M.; chetty, C.M.S.; Umashankari, .K.; Badarinath, A.V.; Lavanya, C.; Ramkanth, S. ( 2009) Microspheres as a novel drug delivery system – A review. International Journal of ChemTech Research, 1 (3) 526-534.
[85] Greenwald, R. B., Choe, Y. H., McGuire, J., & Conover, C. D. (2003). Effective drug delivery by PEGylated drug conjugates. Advanced drug delivery reviews, 55(2), 217-250.
[86] Park, J., Ye, M., & Park, K. (2005). Biodegradable polymers for microencapsulation of drugs. Molecules, 10(1), 146-161.
[87] Yu, D., Peng, P., Dharap, S. S., Wang, Y., Mehlig, M., Chandna, P., ... & Borchard, G. (2005). Antitumor activity of poly (ethylene glycol)–camptothecin conjugate: The inhibition of tumor growth in vivo. Journal of Controlled Release, 110(1), 90-102.
[88] Veronese, F. M., & Pasut, G. (2005). PEGylation, successful approach to drug delivery. Drug discovery today, 10(21), 1451-1458.
[89] Salmaso, S., Semenzato, A., Bersania, S., Chinol, M., Paganelli, G., & Caliceti, P. (2005). Preparation and characterization of active site protected poly (ethylene glycol) - avidin bioconjugates. Biochimica et Biophysica Acta (BBA)-General Subjects, 1726(1), 57-66.
[90] Heyes, J., Hall, K., Tailor, V., Lenz, R., & MacLachlan, I. (2006). Synthesis and characterization of novel poly (ethylene glycol)-lipid conjugates suitable for use in drug delivery. Journal of Controlled Release, 112(2), 280-290.
[91] Rodrigues, P. C., Roth, T., Fiebig, H. H., Unger, C., Mülhaupt, R., & Kratz, F. (2006). Correlation of the acid-sensitivity of polyethylene glycol daunorubicin conjugates with their in vitro antiproliferative activity. Bioorganic & medicinal chemistry, 14(12), 4110-4117.
[92] Scott, E. A., Nichols, M. D., Kuntz-Willits, R., & Elbert, D. L. (2010). Modular scaffolds assembled around living cells using poly (ethylene glycol) microspheres with macroporation via a non-cytotoxic porogen. Acta biomaterialia, 6(1), 29-38.
[93] França, E. L., Ribeiro, E. B., Scherer, E. F., Cantarini, D. G., Pessôa, R. S., França, F. L., & Honorio-França, A. C. (2014). Effects of Momordica charantia L. on the blood rheological properties in diabetic patients. BioMed Research International, 2014.
[94] Ribeiro, A. A., Deluque, A. L., Fagundes, D. L. G., Franca, E. L., & Honorio-Franca, A. C. (2018). Herbal Mixture Adsorbed to Polyethylene Glycol Microspheres Induces Apoptotic Effects on Breast Cancer Cells. Current drug delivery, 15(2), 227-234.
[95] Silva, F. H., Ribeiro, A. A. L., Deluque, A. L., Cotrim, A. C. D. M., de Marchi, P. G. F., França, E. L., & Honorio-França, A. C. (2018). Effects of barium chloride adsorbed to polyethylene glycol (PEG) microspheres on co-culture of human blood mononuclear cell and breast cancer cell lines (MCF-7). Immunopharmacology and immunotoxicology, 40(1), 18-24.
[96] Van Egmond, M., van Spriel, A. B., Vermeulen, H., Huls, G., van Garderen, E., & van de Winkel, J. G. (2001). Enhancement of polymorphonuclear cell-mediated tumor cell killing on simultaneous engagement of FcγRI (CD64) and FcαRI (CD89). Cancer research, 61(10), 4055-4060.
[97] Truong, K. K., Lam, M. T., Grandner, M. A., Sassoon, C. S., & Malhotra, A. (2016). Timing matters: circadian rhythm in sepsis, obstructive lung disease, obstructive sleep apnea, and cancer. Annals of the American Thoracic Society, 13(7), 1144-1154.
[98] Tamm, I., Schriever, F., & Dörken, B. (2001). Apoptosis: implications of basic research for clinical oncology. The lancet oncology, 2(1), 33-42.
[99] Parton, M., Dowsett, M., & Smith, I. (2001). Studies of apoptosis in breast cancer. BMJ: British Medical Journal, 322(7301), 1528.
[100] Bizzarri, M., Proietti, S., Cucina, A., & Reiter, R. J. (2013). Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Expert opinion on therapeutic targets, 17(12), 1483-1496.