Statistics

    Map

Twitter

Monitoring System of the Parameters of Operation of internal Combustion Engines in Thermoelectric Plants for Fault Detection.
( Vol-5,Issue-8,August 2018 )
Author(s):

Paulo Francisco da Silva Ribeiro, Manoel Henrique Reis Nascimento, Jorge de Almeida Brito Junior, Jandecy Cabral Leite, Carlos Alberto Oliveira de Freitas

Keywords:

Sensors, operation of generators, fault detection, TPP.

Abstract:

In this work, it shows the specification of a system for monitoring operating parameters of generators, for diagnostic and fault detection on power generation of thermal power plants (TPP). The objective of this system is to collect real-time information of the engine operating cycle dual-fuel, while working with diesel and natural gas, in order to organize a database with the pressure information from the combustion temperature and cooling water pressure. The use of local or remote monitoring is performed by sensors to detect variations or sudden changes in the generator mode. Through this real-time monitoring can be identified early failures, adapt to changes or repairs parts preserving the integrity of the machines.

ijaers doi crossref DOI:

10.22161/ijaers.5.8.22

Paper Statistics:
  • Total View : 136
  • Downloads : 24
  • Page No: 175-181
Cite this Article:
MLA
Paulo Francisco da Silva Ribeiro et al ."Monitoring System of the Parameters of Operation of internal Combustion Engines in Thermoelectric Plants for Fault Detection.". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 8, 2018, pp.175-181 AI Publications, doi:10.22161/ijaers.5.8.22
APA
Paulo Francisco da Silva Ribeiro, Manoel Henrique Reis Nascimento, Jorge de Almeida Brito Junior, Jandecy Cabral Leite, Carlos Alberto Oliveira de Freitas(2018).Monitoring System of the Parameters of Operation of internal Combustion Engines in Thermoelectric Plants for Fault Detection.. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(8), 175-181. http://dx.doi.org/10.22161/ijaers.5.8.22
Chicago
Paulo Francisco da Silva Ribeiro, Manoel Henrique Reis Nascimento, Jorge de Almeida Brito Junior, Jandecy Cabral Leite, Carlos Alberto Oliveira de Freitas. 2018,"Monitoring System of the Parameters of Operation of internal Combustion Engines in Thermoelectric Plants for Fault Detection.". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(8):175-181. Doi: 10.22161/ijaers.5.8.22
Harvard
Paulo Francisco da Silva Ribeiro, Manoel Henrique Reis Nascimento, Jorge de Almeida Brito Junior, Jandecy Cabral Leite, Carlos Alberto Oliveira de Freitas. 2018,Monitoring System of the Parameters of Operation of internal Combustion Engines in Thermoelectric Plants for Fault Detection., International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(8), pp:175-181
IEEE
Paulo Francisco da Silva Ribeiro, Manoel Henrique Reis Nascimento, Jorge de Almeida Brito Junior, Jandecy Cabral Leite, Carlos Alberto Oliveira de Freitas."Monitoring System of the Parameters of Operation of internal Combustion Engines in Thermoelectric Plants for Fault Detection.", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 8, pp.175-181,2018.
Bibtex
@article {paulofranciscodasilvaribeiro2018monitoring,
title={Monitoring System of the Parameters of Operation of internal Combustion Engines in Thermoelectric Plants for Fault Detection.},
author={Paulo Francisco da Silva Ribeiro, Manoel Henrique Reis Nascimento, Jorge de Almeida Brito Junior, Jandecy Cabral Leite, Carlos Alberto Oliveira de Freitas},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] Aguirre, L. A. (2013). Fundamentos de instrumentação. Luis Antonio Aguirre.
[2] Cabeza, R. T., Santiago, O. L., Viciedo, E. B., & Vega, V. M. (2018). Faults Diagnostic using Hopfield Artificial Neural Network in front of Incomplete Data. Journal of Engineering and Technology for Industrial Applications - JETIA, 4(13), 6. doi: https://dx.doi.org/10.5935/2447-0228.20180011
[3] Capelli, A. (2008). Automação industrial: controle do movimento e processos contínuos: Ed. Érica.
[4] Coronado-Martinez, F. U., Ruiz-Sanchez, F. J., & Suarez-Cerda, D. A. (2017, 8-10 Nov. 2017). Fault detection and diagnosis of complex engineering systems based on a NNARX multi model applied to a fossil fuel electric power plant. Paper presented at the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC).
[5] Dorf, R. C., & Bishop, R. H. (2011). Modern control systems: Pearson.
[6] Dunn, W. C. (2005). Fundamentals of industrial instrumentation and process control (Vol. 681): McGraw-Hill.
[7] EPE, E. d. P. E. (2017). BRAZILIAN ENERGY BALANCE. Empresa de Pesquisa Energética. – Rio de Janeiro.
[8] Fialho, A. B. (2006). Instrumentação industrial: conceitos, aplicações e análises: Editora Érica.
[9] Fonseca, M., Bezerra, U. H., Brito, J. d. A., Leite, J. C., & Nascimento, M. H. R. (2018). Pre-dispatch of Load in Thermoelectric Power Plants Considering Maintenance Management using Fuzzy Logic. IEEE Access, 1-1. doi:10.1109/ACCESS.2018.2854612
[10] Halliday, D., Resnick, R., & Walker, J. (2008). Fundamentos de Física, 8a. edição, Vol. 2, LTC: Wiley.
[11] Lima, M. T. d. S. L., & Souza, M. C. d. (2014). Considering on the Use of Thermal Power Plants in Brazil. Ciência e Natura, 37(Especial UFVJM), 7. doi:10.5902/2179460X18493
[12] Liyanagedera, N. D., Ratnaweera, A., & Randeniya, D. I. B. (2013, 17-20 Dec. 2013). Vibration signal analysis for fault detection of combustion engine using neural network. Paper presented at the 2013 IEEE 8th International Conference on Industrial and Information Systems.
[13] Mayadevi, N., Vinodchandra, S. S., & Ushakumari, S. (2012, 23-25 Aug. 2012). Failure forecast engine for power plant expert system shell. Paper presented at the 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT).
[14] Mendonça, P., Bonaldi, E. L., de Oliveira, L. E. d. L., Torres, G. L., da Silva, J. G. B., da Silva, L. E. B., . . . Santana, W. C. (2007). Desenvolvimento de Sistema Preditivo para Diagnóstico Termomecânico de Falhas em Motores de Combustão Interna.
[15] MME. (2016). Resenha Energética Brasileira 2016. MME: Ministério de Minas e Energia. Resenha Energética Brasileira 2016 . Disponível em: Acesso em: 4 nov. 2017., 12(45-67).
[16] Molinar-Monterrubio, J., & Castro-Linares, R. (2007, 25-28 Sept. 2007). Sliding Mode Observer for Internal Combustion Engine Misfire Detection. Paper presented at the Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007).
[17] Natale, F. (2001). Automação Industrial. 2ª edição Revisada e Atualizada.
[18] Nieto, F. J., Blazquez, F., Platero, C. A., & Casado, A. J. (2017, Aug. 29 2017-Sept. 1 2017). Combustion problem identification based on electric power output oscillation assessment for Diesel-Engine driven generators. Paper presented at the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED).
[19] Ogata, K. (2007). Modern control engineering (Vol. 4): Prentice hall India.
[20] Ostman, F., & Toivonen, H. T. (2008). Model-based torsional vibration control of internal combustion engines. IET Control Theory & Applications, 2(11), 1024-1032. doi:10.1049/iet-cta:20070479
[21] Samtani, S., Yu, S., Zhu, H., Patton, M., & Chen, H. (2016, 28-30 Sept. 2016). Identifying SCADA vulnerabilities using passive and active vulnerability assessment techniques. Paper presented at the 2016 IEEE Conference on Intelligence and Security Informatics (ISI).
[22] Sanchez, E. N., Suarez, D. A., & Ruz, J. A. (2004, June 28 2004-July 1 2004). Fault detection in fossil electric power plant via neural networks. Paper presented at the Proceedings World Automation Congress, 2004.
[23] Silveira, P. R. d., & Santos, W. E. d. (2004). Automação e controle discreto: Érica.
[24] Trindade, G. H., Sperling, E., & Bourbon, F. d. (2017). Geração de Energia Elétrica no Brasil. ANEEL - Agência Nacional de Energia Elétrica.
[25] Wärtsilä. (2015). Instruction Manual - WÄRTSILÄ 18V 46. Wärtsilä Finland Oy, 486.