Statistics

    Map

Twitter

Optimization of metakaolin-based Geopolymer Composite using Sisal Fibers, response Surface Methodology, and Canonical Analysis
( Vol-6,Issue-4,April 2019 ) OPEN ACCESS
Author(s):

Lorayne Cristina Silva, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Lucas Bellini Machado

Keywords:

Mechanical properties, Modulus rupture, Natural fibers, Sisal fibers.

Abstract:

In the present context, geopolymer appears as an ecologically viable alternative compared to Portland cement, due to lower CO2 emissions rate. The objective of this work is to study reinforced geopolymer pastes with elongated sisal fibers by means of parameters such as flexural strength. For this, metakaolinwas used as an aluminosilicate source material in addition to a combination of sodium silicate and sodium hydroxide as the activator solution. The influence of the independent variables sisal fiber percentage, molar ratio between activator and metakaolin, and the curing time was evaluated through an experimental design. The statistical model of central composite planning was used to optimize the results obtained. The best value for the modulus of rupture was of approximately 9.3 MPa, obtained with 2 days curing, with the activator/metakaolin ratio of 0.59 and percentage of sisal fiber de 4.34.

ijaers doi crossref DOI:

10.22161/ijaers.6.4.4

Paper Statistics:
  • Total View : 46
  • Downloads : 10
  • Page No: 032-044
Cite this Article:
MLA
Lorayne Cristina Silva et al ."Optimization of metakaolin-based Geopolymer Composite using Sisal Fibers, response Surface Methodology, and Canonical Analysis". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 6, no. 4, 2019, pp.032-044 AI Publications, doi:10.22161/ijaers.6.4.4
APA
Lorayne Cristina Silva, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Lucas Bellini Machado(2019).Optimization of metakaolin-based Geopolymer Composite using Sisal Fibers, response Surface Methodology, and Canonical Analysis. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),6(4), 032-044. http://dx.doi.org/10.22161/ijaers.6.4.4
Chicago
Lorayne Cristina Silva, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Lucas Bellini Machado. 2019,"Optimization of metakaolin-based Geopolymer Composite using Sisal Fibers, response Surface Methodology, and Canonical Analysis". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).6(4):032-044. Doi: 10.22161/ijaers.6.4.4
Harvard
Lorayne Cristina Silva, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Lucas Bellini Machado. 2019,Optimization of metakaolin-based Geopolymer Composite using Sisal Fibers, response Surface Methodology, and Canonical Analysis, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).6(4), pp:032-044
IEEE
Lorayne Cristina Silva, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Lucas Bellini Machado."Optimization of metakaolin-based Geopolymer Composite using Sisal Fibers, response Surface Methodology, and Canonical Analysis", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.6,no. 4, pp.032-044,2019.
Bibtex
@article {loraynecristinasilva2019optimization,
title={Optimization of metakaolin-based Geopolymer Composite using Sisal Fibers, response Surface Methodology, and Canonical Analysis},
author={Lorayne Cristina Silva, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Lucas Bellini Machado},
journal={International Journal of Advanced Engineering Research and Science},
volume={6},
year= {2019},
}
Share:
References:

[1] Mikulcic, H., Cabezas, H., Vujanovic, M., Duic, N. (2016). Environmental assessment of different cementmanufacturing processes based on Energy and Ecological Footprint analysis. Journal of Cleaner Production, 130, 213-221.
[2] Provis, J.L. (2014). Geopolymers and other alkali activated materials: why, how, and what? Materials and Structures, 47, 11-25.
[3] McLellan, B.C., Williams, R.P., Lay, J., Van Riessen, A., Corder, G.D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19, 1080-1090.
[4] Provis, J.L. (2017). Alkali-activated materials. Cement and Concrete Research, 114, 40-48.
[5] Aleem, M.I., Arumairaj, P.D. (2012).Geopolymer concrete – A review. IJSET, 1,118-122.
[6] Aldred, J.M. (2013). Engineering properties of a proprietary premixed geopolymer concrete. In: Proceedings Concrete Institute of Australia Biennial Conference in Concrete.
[7] Zhao, R., Sanjayan, J.G.C. (2011). Geopolymer and Portland cement concretes in simulates fire. Magazine of Concrete Research, 63, 163-173.
[8] Rangan, B.V. (2014). Geopolymer concrete for environmental protection. The Indian Concrete Journal, 88 (41-48), 50-59.
[9] Singh, B., Ishwarya, G., Gupta, M., Bhattacharyya, S.K. (2015).Geopolymer concrete: a review of some recent developments. Construction and Building Materials, 85, 78-90.
[10] Schneider, M., Romer, M., Tschudin, M., Bolio, H. (2011). Sustainable cement production—present and future. Cement and Concrete Research, 41 (7), 642-650.
[11] Fernández-Jiménez, A., Palomo, A. (2005).Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research, 35, 1984-1992.
[12] Roy, D.M. (1999). Alkali activated cements – Opportunities and challenges. Cement and Concrete Research, 29, 249-254.
[13] Van Deventer, J.S.J, Provis, J.L., Duxson, P. (2012). Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering, 29, 89-104.
[14] Duxson, P., Provis, J.L., Lukey, G.C., Van Deventer, J.S.J. (2007). The role of inorganic polymer technology in the development of green concrete. Cement and Concrete Research, 37 (12), 1590-1597.
[15] Lin, T., Jia, D., He, P., Wang, M., Liang, D. (2008). Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites. Materials Science and Engineering: A,497, 181-185.
[16] Silva, F.A., Mobasher, B., Toledo Filho, R.D. (2009). Cracking mechanisms in durable sisal fiber reinforced cement composites. Cement and Concrete Research, 31, 721-730.
[17] Silva, F.A., Chawla, N., Toledo Filho, R.D. (2010). Mechanical behavior of natural sisal fibers. Journal of Biobased Materials and Bioenergy, 24, 777-785.
[18] Alomayri, T., Shaikh, F.U.A., Low, I.M. (2013). Characterisation of cotton fibre-reinforced geopolymer composites. Composites Part B: Engineering, 50, 1-6.
[19] Alzeer, M., Mackenzie, K. (2013). Synthesis and mechanical properties of novel composite of inorganic polymers (geopolymers) with unidirectional natural flax fibres (phormiumtenax). Applied Clay Science, 75-76, 148-152.
[20] Alshaaer, M., Mallouh, S.A., Kafawein, J., Fahmy, T., Kallel, A., Rocha, F. (2017). Fabrication, microstructural and mechanical characterization of Luffa Cylindrical Fibre - Reinforced geopolymer composite.Applied Clay Science, 143, 125-133.
[21] Sankar, K., Ribeiro, R.A.S., Ribeiro, M.G.S., Kriven, W.M. (2017). Potassium ‐ Based Geopolymer Composites Reinforced with Chopped Bamboo Fibers. Journal of the American Ceramic Society, 100, 49-55.
[22] Bentur A., Mindess S. second eds. Fibre reinforced cementitious composites. Grã-Bretanha; 2007.
[23] Bouaid, A., Martinez, M., Aracil, J. (2007). A comparative study of the production of ethyl esters from vegetable oils as a biodiesel fuel optimization by factorial design. Chemical Engineering Journal, 134, 93-99.
[24] Santana, R.C., Santos, M.A., Ataíde, C.H., Barrozo, M.A.S. (2010). Evaluation of the influence of process variables on flotation of phosphate. Materials Science Forum, 660-661, 555-560.
[25] Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965-977.
[26] Santana, R.C., Farnese, A.C.C., Fortes, M.C.B., Ataíde, C.H., Barrozo, M.A.S. (2008).Influence of particle size and reagent dosage on the performance of apatite flotation. Separation and Purification Technology, 64, 8-15.
[27] Khayet, M., Cojocaru, C., Essalhi, M. (2011). Artificial neural network modeling and response surface methodology of desalination by reverse osmosis. Journal of Membrane Science, 368, 202-214.
[28] RILEM. Technical Committee 49 TRF. (1989). Test for determination of modulus of rupture and limit of proporcionality of thin fibre reinforced cement section – Matériauxet Constructions, 17, 441-443.
[29] Munawar, S.S., Umemura, K., Kawai, S. (2007).Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. Journal of Wood Science, 53, 108-113.
[30] Silva, F.A., Toledo Filho, R.D., Melo Filho, J.A., Fairbairn, E.M.R. (2011). Physical and mechanical properties of durable sisal fiber-cement composites. ConstructionandBuildingMaterials, 10, 2022-2027.
[31] Rabello, M. (2003). Estudo da influência do MetacaulimHP como adição de alta eficiência em concretos de cimento Portland. Escola Politécnica da Universidade de São Paulo, 1-65.
[32] Paiva, H., Velosa, A., Cachim, P., Ferreira, V.M. (2016). Effect of pozzolans with different physical and chemical characteristics on concrete properties.  Materiales de Construcción, 66, 1-12.
[33] Wan, Q., Rao, F., Song, S., Gárcia, R.E., Estrella, R.M., Patino, C.L., Zhang, Y. (2017). Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cement and Concrete Composites, 79, 45-52.
[34] El-Khaiary, M., Malash, G. (2011). Common data analysis errors in batch adsorption studies. Hydrometallurgy, 105, 314-320.
[35] Jamil, N.H., Halim, N.R.A., Sarbon, N.M. (2013). Optimization of enzymatic hydrolysis condition and functional properties of eel (Monopterus sp.) protein using response surface methodology. Food Research International, 23, 1-9.
[36] Gao, K., Lin, K.L., Wang, D., Hwang, C.L., Tuan, B.L.A., Shiu, H.S., Cheng, T.W. (2013). Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Construction and Building Materials, 48, 441-447.
[37] Moon, J., Bae, S., Celik, K., Yoon, S., Kim, K.H., Kim, K.S., Monteiro, P.J.M. (2014). Characterisation of natural pozzolan-based geopolymeric binders. Cement and Concrete Composites, 53, 97-104.
[38] Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., Van Deventer, J.S.J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269, 47-58.
[39] Nguyen, H., Carvelli, V., Adesanya, E., Kinnunen, P., Illikainen, M. (2018). High performance cementitious composites from alkali-activated ladle slag reinforced with polypropylene fibers. Cement and Concrete Composites, 90, 150-160.
[40] Palomo, A., Grutzeck, M.W., Blanco, M.T. (1999). Alkali-activated fly ashes – A cement for the future.Cement and Concrete Research, 29, 1323-1329.
[41] Zhang, Z., Wang, H., Provis, J.P., Bullen, F., Reid, A., Zhu, Y. (2012). Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim. Acta, 539, 23-33.
[42] Bouguermouh, K., Bouzidi, N., Mahtout, L., Pérez-Villarejo, L., Martínez-Cartas, M.L. (2017). Effect of acid attack on microstructure and composition of metakaolin-based geopolymers: The role of alkaline activator. Journal of Non-Crystalline Solids, 463, 128-137.
[43] He, J., Zhang, J., Yu, Y., Zhang, G. (2012). The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixtures: A comparative study. Construction and Building Materials, 30, 80-91.
[44] Zhang, M., El-Korchi, T., Zhang, G., Liang, J., Tao, M. (2014). Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud–fly ash based geopolymers. Fuel, 134, 315-325.
[45] Yang, T., Zhu, H., Zhang, Z. (2017). Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Construction and Building Materials, 153, 284-293.
[46] Zhang, Y.J., Wang, Y.C., Xu, D.L., Li, S. (2010). Mechanical performance and hydration mechanism of geopolymer composite refinforced by resin.Materials Science and Engineering: A, 527, 6574-6580.
[47] Tchakaouté, H.K., Ruscher, C.H. (2017). Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: A comparative study. Applied Clay Science, 140, 81-87.