Statistics

    Map

Twitter

Optimization of the Percentage of Cellulose, Latex and Metakaolin in the Production of Cementitious Composites
( Vol-6,Issue-4,April 2019 ) OPEN ACCESS
Author(s):

Lara Cristina Péres dos Santos, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Daniel Pasquini

Keywords:

Cellulose kraft pulp,Design of experiments, Flexural strength, Natural rubber latex.

Abstract:

In this work the influence of the addition of the variables cellulose kraft pulps, natural rubber latex and metakaolin as reinforcements in cementitious composites was studied.The influence of the analyzed variables on the properties of the cementitious composites was evaluated through an experimental design (DOE) at 28 days age. The best modulus of rupture was the 12.29 MPa presented by the composite with 7.097% cellulose, 0.37% latex and 50.155% metakaolin. The composite with 5.928% cellulose, 1.85% latex, and 55.195% metakaolin had the best toughness of approximately 1.10 kJ/m². According to the results obtained contact angle, it was possible to prove that the latex adhered to the pulp, hydrophobizing it. Therefore, it was concluded that it is possible to use the natural rubber latex in the cellulosic pulp and the metakaolin to protect the fiber in cementitious composites.

ijaers doi crossref DOI:

10.22161/ijaers.6.4.5

Paper Statistics:
  • Total View : 51
  • Downloads : 15
  • Page No: 045-058
Cite this Article:
MLA
Lara Cristina Péres dos Santos et al ."Optimization of the Percentage of Cellulose, Latex and Metakaolin in the Production of Cementitious Composites". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 6, no. 4, 2019, pp.045-058 AI Publications, doi:10.22161/ijaers.6.4.5
APA
Lara Cristina Péres dos Santos, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Daniel Pasquini(2019).Optimization of the Percentage of Cellulose, Latex and Metakaolin in the Production of Cementitious Composites. International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),6(4), 045-058. http://dx.doi.org/10.22161/ijaers.6.4.5
Chicago
Lara Cristina Péres dos Santos, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Daniel Pasquini. 2019,"Optimization of the Percentage of Cellulose, Latex and Metakaolin in the Production of Cementitious Composites". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).6(4):045-058. Doi: 10.22161/ijaers.6.4.5
Harvard
Lara Cristina Péres dos Santos, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Daniel Pasquini. 2019,Optimization of the Percentage of Cellulose, Latex and Metakaolin in the Production of Cementitious Composites, International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).6(4), pp:045-058
IEEE
Lara Cristina Péres dos Santos, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Daniel Pasquini."Optimization of the Percentage of Cellulose, Latex and Metakaolin in the Production of Cementitious Composites", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.6,no. 4, pp.045-058,2019.
Bibtex
@article {laracristinapéresdossantos2019optimization,
title={Optimization of the Percentage of Cellulose, Latex and Metakaolin in the Production of Cementitious Composites},
author={Lara Cristina Péres dos Santos, Rondinele Alberto dos Reis Ferreira, Leila Aparecida de Castro Motta, Daniel Pasquini},
journal={International Journal of Advanced Engineering Research and Science},
volume={6},
year= {2019},
}
Share:
References:

[1] Mikulcic, H., Cabezas, H., Vujanovic, M., Duic, N. (2016). Environmental assessment of different cement manufacturing processes based on Emergy and Ecological Footprint analysis. Journal of Cleaner Production, 130, 213-221.
[2] Silva, D.J., D’Almeida, M.L.O. (2009).Nanocristais de celulose. O papel, 70, 34-52.
[3] Pelliser, F., Zavarise, N., Longo, T.A., Bernardin, A.M. (2011). Concrete made with recycled tire rubber: Effect of alkaline activation and silica Fume addition. Journal of Cleaner Production,19, 757-763.
[4] Wang, Y., Wu, H.C., Li, V.C. (2000). Concrete reinforcement with recycled fibers. Journal of Materials in Civil Engineering, 12, 314-319.
[5] Onuaguluchi, O., Banthia, N. (2016). Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 68, 96-108.
[6] Macvicar, R., Matuana, L.M., Balatinecz, J.J. (1999). Aging mechanisms in cellulose fiber reinforced cement composites. Cement and Concrete Composites, 21, 189-196.
[7] Ardanuy, M., Claramunt, J., Toledo Filho, R.D. (2015). Cellulosic fiber reinforced cement-based composites: A review of recent research.Construction and Building Materials, 79, 115-128.
[8] Lima, P.R.L., Toledo Filho, R.D. (2004). Uso de metacaulinita para incremento da durabilidade de compósitos à base de cimento reforçados com fibras de sisal. AmbienteConstruído, 8, 7-19.
[9] Mohanta, N., Acharya, S.K. (2015). Fiber surface treatment: Its effect on structural, thermal, and mechanical properties of Luffa cylindrical fiber and its composite. JournalofCompositeMaterialsJournal, 50, 1-15.
[10] D’almeida, A.L.F.S., Calado, V., Barreto, D.W. (2005). Acetilação da Fibra de Bucha (Luffacylindrica). Polímeros, 15, 59-62.
[11] Motta, L.A.C., John, V.M., Agopyan, V. (2010). Thermo-mechanical treatment to improve properties of sisal fibres for composites. Materials Science Forum,636-637, 253-259.
[12] Jo, B., Chakraborty, S., Yoon, K.W. (2014). A hypotheticalmodel based on effectiveness of combined alkali and polymer latex modified jute fibre in controlling the setting and hydration behavior of cement. Construction and Building Materials, 68, 1-9.
[13] Joseph, J., John, L. (2017). Natural rubber latex modified cement concrete – A review. IJESC, 7, 10772-10774.
[14] Khamput, P., Suweero, K. (2011). Properties of Mortar Mixing with Medium Ammonia Concentrated Latex. Energy Procedia, 9, 559-567.
[15] Asprone, D., Durante, M., Prota, A., Manfredi, G. (2011). Potencial of structural pozzolanic matrix-hemp fiber grid composites. Construction and Building Materials, 25, 2867-2874.
[16] AMERICAN SOCIETY FOR TESTING MATERIALS – ASTM D 1076-02, Standard Specification for Rubber – Concentrated, Ammonia Preserved, Creamed, and Centrifuged Natural Latex, 2007.
[17] Rabello, M. (2003). Estudo da influência do MetacaulimHP como adição de alta eficiência em concretos de cimento Portland. Escola Politécnica da Universidade de São Paulo, 1-65.
[18] Flauzino Neto, W.P., Mariano, M., Silva, I.S.V., Silvério, H.A., Putaux, J., Otaguro, H., Pasquini, D., Dufresne, A. (2016). Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio celulosenanocrystals isolated soy hulls. Carbohydrate Polymers, 153, 143-152.
[19] Santana, R.C., Farnese, A.C.C., Fortes, M.C.B., Ataide, C.H., Barrozo, M.A.S. (2008). Influence of particle size and reagent dosage on the performance of apatite flotation. Separation and Purification Technology, 64, 8-15.
[20] Bentur A., Mindess S., second eds. Fibre reinforced cementitious composites, Grã-Bretanha; 2005.
[21] RILEM. Technical Committee 49 TRF. (1989).Matériauxet Constructions, 17,441-443.
[22] AMERICAN SOCIETY FOR TESTING MATERIALS – E 871-82: Standard Test Method for Moisture Analysis of Particulate Wood Fuels, 2013.
[23] Pereira, P.H.F., Voorwald, H.C.J., Cioffi, M.O.H., Pereira, M.L.C.P. (2012). Preparação e caracterização de materiais híbridos celulose/NbOPO4.nH2O a partir de celulose branqueada de bagaço de cana-de-açúcar. Polímeros, 22, 88-95.
[24] Wille, V.K.D., Pedrazzi, C., Colodette, J.L., Oliveira, R.C., Coldebella, R., Geisbrecht, B.M., Saccol, A.F.O. (2017). Cellulosepulpproducedfrombulrushfiber. Ciência Rural, 47, 1-6.
[25] Mokfienski, A., Colodette, J.L., Gomide, J.L., Carvalho, A.M.M.L. (2008). A importância relativa da densidade da madeira e do teor de carboidratos no rendimento de polpa e na qualidade do produto. Ciência Florestal, 18, 401-413.
[26] Silva, E.J., Marques, M.L., Velasco, F.G., Fornari Junior, C., Luzardo, F.M., Tashima, M.M.A. (2017). New treatment for coconut fibers to improve the properties of cement-based composites – Combined effect of natural latex/pozzolanic materials. Sustainable Materials and Technologies, 12, 44-51.
[27] Bijen, J. (1990). Improved Mechanical Properties of Glass Fibre Reinforced Cement by Polymer Modification. Cementand Concrete Composites, 12, 95-101.
[28] Paiva, H., Velosa, A., Cachim, P., Ferreira, V.M. (2016). Effect of pozzolans with different physical and chemical characteristics on concrete properties. Materiales de Construcción, 66 (322), 1-12.
[29] Wan, Q., Rao, F., Song, S., García, R.E., Estrella, R.M., Patiño, G.L., Zhang, Y. (2017). Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cementand Concrete Composites, 79, 45-52.
[30] Callister, W.D., fifth eds. Ciência e engenharia dos materiais: uma introdução, Rio de Janeiro; 2000.
[31] Anjos, M.A.S., Ghavami, K., Barbosa, N.P. (2003). Compósitos à base de cimento reforçados com polpa celulósica de bambu. Parte I: Determinação do teor de reforço ótimo. Revista Brasileira de Engenharia Agrícola e Ambiental, 7, 339-345.
[32] Tonoli, G.H.D., Rodrigues Filho, U.P., Savastano JR., H.; Bras, J., Belgacem, M.N., Lahr, F.A.R. (2009). Cellulose modified fibres in cement based composites. Composites Part A: Applied Science and Manufacturing, 40, 2046-2053.
[33] Hoppe Filho, J., Gobbi, A., Pereira, E., Tanaka, R.S., Medeiros, M.H.F. (2017).Atividade pozolânica de adições minerais para cimento Portland (Parte II): Índice de atividade pozolânica com cimento Portland (IAP), difração de raios-X (DRX) e termogravimetria (TGA). Matéria, 22 (3).
[34] Romano, R.C.O., Fujii, A.L., Souza, R.B., Takeashi, M.S., Pileggi, R.G., Cincotto, M.A. (2016). Acompanhamento da hidratação de cimento Portland simples com resíduo de bauxita. Cerâmica, 62, 215-223.
[35] Savastano JR., H., Warden P.G., Coutts R.S.P. (2005). Microstructure and mechanical properties of waste fibre–cement composites. Cement and Concrete Composites, 27 (5), 583–592.