Performance of Different Models for Estimating the Global Solar Radiation in Brazil

( Vol-5,Issue-8,August 2018 ) OPEN ACCESS

André Belmont Pereira, Luis Miguel Schiebelbein


Solar radiation, global transmittance, modeling, sustainable agriculture.


Global solar irradiance (Qg) is an important variable of the physical environment that has been constantly used in agrometeorological models, either for climatic characterization or to give support to radiometric studies developed for irrigation planning and crop weather modeling approaches. The current study aimed to compare measured daily values of Qg with estimates of this variable by means of four different methods. For that throughout the period comprised between March 28th of 2008 and August 8th of 2011 at Ponta Grossa, PR, Brazil, a simple linear regression study confronting radiometric data measured by a pyranometer and estimates of Qg was proposed herein. Global transmittance was conditioned by atmospheric cloudiness. The models based on mean global transmittance in daily basis performed more satisfactorily and generated values of Qg with accuracy and exactness at the site in study, as confirmed by the statistical parameters employed to validate the usage of models proposed by Angström-Prescott. However, the performance of the methodologies based on the determination of mean global transmittance under extreme atmospheric conditions, showed the highest Willmott coefficients, which was to be close to 1, reflecting then precision and reliability for the calculated values of Qg, when compared to observed values monitored at an automatic weather station.

ijaers doi crossref DOI:


Paper Statistics:
  • Total View : 375
  • Downloads : 57
  • Page No: 062-069
Cite this Article:
Click here to get all Styles of Citation using DOI of the article.

[1] ADARAMOLA, M. S. Estimating global solar radiation using common meteorological data in Akure, Nigeria. Renewable Energy, v.47, p.38-44, 2012.
[2] ALMOROX, J.; HONTORIA, C. Global solar radiation estimation using sunshine duration in Spain. Energy Conversion Management, v.45, p.1529-1535, 2004.
[3] AMPRATWUM, D. B.; DORVLO, A. S. S. Estimation of solar radiation from the number of sunshine hours. Applied Energy, v.63, p.161-167, 1999.
[4] BAKIRCI, K. Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy, v.34, p.485-501, 2009.
[5] BERUSKI, G. C.; LEITE, M. L.; VIRGENS FILHO, J. S.; ADACHESKI, P. A.; OLIVEIRA, A. V. Análise probabilística da velocidade média e caracterização da direção predominante do vento no município da Lapa/PR. Revista RA’E GA, v.17, p.65-75, 2009.
[6] BORGES, V. P.; OLIVEIRA, A. S.; COELHO FILHO, M. A.; SILVA, T. S. M.; PAMPONET, B. M. Avaliação de modelos de estimativa da radiação solar incidente em Cruz das Almas, Bahia. Revista Brasileira de Engenharia Agrícola e Ambiental, v.14, n.1, p.74-80, 2010.
[7] CAMARGO, A. P.; SENTELHAS, P. C. Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo, Brasil. Revista Brasileira de Agrometeorologia, v.5, n.1, p.89-97, 1997.
[8] CHAAR, L. E.; LAMONT, L. A. Global solar radiation: Multiple on-site assessments in Abu Dhabi, UAE. Renewable Energy, v.35, p.1596-1601, 2010.

[9] CHEN, J. L.; LI, G. S. Assessing effect of time scale on the solar radiation sunshine duration relationship. Quarterly Journal of the Hungarian Meteorological Service, v.116, n.2, p.123-143, 2012.
[10] CHINEKE, T. C.; OKORO, U. K. Application of Sayigh “Universal Formula” for global solar radiation estimation in the Niger Delta region of Nigeria. Renewable Energy, v.35, p.734-739, 2010.
[11] DANTAS, R. T.; SOUZA, W. M.; ARAÚJO, J. A. P. Transmitância atmosférica em três municípios do estado da Paraíba. In: CONGRESSO BRASILEIRO DE METEOROLOGIA, XI, 2000, Rio de Janeiro - RJ. Anais: XI CONGRESSO BRASILEIRO DE METEOROLOGIA. Rio de Janeiro - RJ: SBMET, 2000, p. 3949-3954.
[12] FEDERER, C. A.; TANNER, C. B. A simple integrating pyranometer for measuring daily solar radiation. Journal of Geophysical Research, v.70, p.2301-2306, 1965.
[13] GLOVER, J.; McCULLOCH, J. S. G. The empirical relation between solar radiation and hours of sunshine. Quarterly Journal of the Royal Meteorological Society, v.84, n.360, p.172-175, 1958.
[14] GOODWIN, P.; LAWTON, R. On the asymmetry of the symmetric MAPE. International Journal of Forecasting, v.15, n.2, p.405-408, 1999.
[15] KOLEBAJE, O. T.; MUSTAPHA, L. O. On the performance of some predictive models for global solar radiation estimate in tropical stations: Port Harcourt and Lokoja, The African Review of Physics, v.7, n.15, p.145-163, 2012.
[16] LEGATES, D. R.; McCABE Jr, G. F. Evaluating the use of “goodness-of-fit” measures in hydraulic and hydroclimatic model validation. Water Resources Research, v.35, n.1, p.233-241, 1999.
[17] LI, H.; MA, W.; LIAN, Y.; WANG, X.; ZHAO, L. Global solar radiation estimation with sunshine duration in Tibet, China. Renewable Energy, v.36, p.3141-3145, 2011.
[18] NAMRATA, K.; SHARMA, S. P.; SAKSENA, S. B. L. Comparison of different models for estimation of global solar radiation in Jharkhand (India) region. Smart Grid and Renewable Energy, v.4, p.348-352, 2013.
[19] MUZATHIK, A. M.; NIK, W. B. W.; IBRAHIM, M. Z.; SAMO, K. B.; SOPIAN, K.; ALGHOUL, M. A. Daily global solar radiation estimate based on sunshine hours. International Journal of Mechanical and Materials Engineering, v.6, n.1, p.75-80, 2011.
[20] NEWLAND, F. J. A study of solar radiation models for the coastal region of South China. Solar Energy, v.43, p.227-235, 1989.
[21] OMETTO, J. C., 1981. Bioclimatologia vegetal. São Paulo, Editora Agronômica Ceres. 440p.
[22] PAULESCU, M.; GRAVILA, P.; TULCAN-PAULESCU, E. Fuzzy logic algorithms for atmospheric transmittances of use in solar energy estimation. Energy Conversion and Management, v.49, p.3691-3697, 2008.
[23] PENMAN, H. L. Natural evaporation from open water, bare soil and grass. Proceedings Royal Society, London, Series A, v.193, p.120-145, 1948.
[24] PEREIRA, A. R.; ANGELOCCI, L. R.; SENTELHAS, P. C., 2002. Agrometeorologia: fundamentos e aplicações práticas. 1º ed. Guaíba: Editora Agropecuária. 478p.
[25] PEREIRA, A. B.; VILLA NOVA, N. A.; GALVANI, E. Estimation of global solar radiation flux density in Brazil as a function of a single measurement at solar noon. Biosystems Engineering, v.86, n.1, p.27-34, 2003.
[26] PEREIRA, A. B.; VILLA NOVA, N. A. Potato maximum yield as affected by crop parameters and climatic factors in Brazil. HortScience, v.43, n.5, p.1611-1614, 2008.
[27] PEREIRA, A. B.; VRISMAN, A. L.; GALVANI, E. Estimativa da radiação solar global diária em função do potencial de energia solar na superfície do solo. Scientia Agricola, v.59, n.2, p.211-216, 2002.
[28] QUERINO, C. A. S.; MOURA, M. A. L.; QUERINO, J. K. A. S.; RADOW, C. V.; MARQUES FILHO, A. O. Estudo da radiação solar global e do índice de transmissividade (kt), externo e interno, em uma floresta de mangue em Alagoas – Brasil. Revista Brasileira de Meteorologia, v.26, n.2, p.204-294, 2011.
[29] SABZIPARVAR, A. A.; MOUSAVI, R.; MAROFI, S.; EBRAHIMIPAK, N. A.; HEIDARI, M. An improved estimation of the Angstrom–Prescott radiation coefficients for the FAO56 Penman–Monteith evapotranspiration method. Water Resources Management, v.27, p.2839-2854, 2013.
[30] ŞEN, Z. Simple nonlinear solar irradiation estimation model. Renewable Energy, v.32, p.342-350, 2007.
[31] SOUZA, A. P.; ESCOBEDO, J. F.; DAL PAI, A.; GOMES, E. N. Estimativa das componentes da radiação solar incidente em superfícies inclinadas baseadas na radiação solar global horizontal. Revista Brasileira de Engenharia Agrícola e Ambiental, v.15, n.3, p.277-288, 2011.
[32] TOĞRUL, T. İ. Estimation of solar radiation from Angstroms coefficients by using geographical and meteorological data in Bishkek, Kyrgyzstan. Journal of Thermal Science and Technology, v.29, n.2, p.99-108, 2009.
[33] THORTON, P. E.; RUNNING, S. W. An improved algorithm for estimation daily solar radiation from measurements of temperature, humidity and precipitation. Agriculture and Forest Meteorology, v.131; p.54-76, 1999.
[34] YOUSIF, C.; QUECEDO, G., O.; SANTOS, J. B. Comparison of solar radiation in Marsaxlokk, Malta and Valladolid, Spain. Renewable Energy, v.49, p.203-206, 2013.
[35] WILLMOTT, C. J.; ACKLESON, S. G.; DAVIES, R. E.; FEDDEMA, J. J.; KLINK, K. M.; LEGATES, D. R.; O’DONNELL, J.; ROWE, C. M. Statistics for the evaluation and comparison of models. Journal of Geophysical Research, v.90, n.5, p.8995-9005, 1985.
[36] WU, Z.; DU, H.; ZHAO, D.; LI, M.; MENG, X.; ZONG, S. Estimating daily global solar radiation during the growing season in Northeast China using the Angstrom-Prescott model. Theoretical and Applied Climatology, v.108, p.495-503, 2012.