Statistics

    Map

Twitter


Time distribution of intense rainfalls at Campinas, Brazil

( Vol-5,Issue-12,December 2018 ) OPEN ACCESS
Author(s):

Marcelo R. de Campos, Ronalton E. Machado

Keywords:

heavy rainfalls, hyetograph, probability distribution, temporal distribution.

Abstract:

the temporal variation of intense rainfalls is of great importance in hydrological analyses and prediction, which is required for dimensioning engineering projects. Therefore, this study has as objective to determine the temporal distribution of intense rainfalls with durations of 1, 2 and 4 h in Campinas, state of Sao Paulo, Brazil, for the period from 1997 to 2016. The rainfalls with duration of 1 h were subdivided in three intervals of 20 min. Rainfalls with duration of 2 and 4 h were subdivided in four intervals each, respectively of 1 h for the latter and of 30 min for the former. For rainfalls of 1, 2 and 4 h, the early rain distribution prevailed, i.e., the rainfall is more intense in the first period of time, regardless the total and duration of the event. Statistically, the intensive rainfall data adjusted to the Lognormal and Truncated Negative Binomial probability distributions.

ijaers doi crossref DOI:

10.22161/ijaers.5.12.15

Paper Statistics:
  • Total View : 119
  • Downloads : 23
  • Page No: 107-117
Cite this Article:
Click here to get all Styles of Citation using DOI of the article.
References:

[1] ABREU, F. G.; SOBRINHA, L. A.; BRANDÃO, J. L. 2017. Análise da distribuição temporal das chuvas em eventos hidrológicos extremos. Engenharia Sanitária Ambiental, v.22, n.2, p. 239-25. doi: 10.1590/S1413-41522016146750.
[2] AHMED, S.I., RUDRA, R.P., GHARABAGHI, B., MACKENZIE, K., DICKINSON, W.T., 2012. Within-storm rainfall distribution effect on soil erosion rate. ISRN Soil Sci. doi: 10.5402/2012/310927.
[3] AKSOY, H. 2000. Use of Gamma Distributions in Hydrological Analysis. Turk. J. Engin. Environ. Sci. 24: 419-428.
[4] AMIN, M.T.; RIZWAN, A.; ALAZBA, A. A. 2015. A best-fit probability distribution for the estimation of rainfall in northern regions of Pakistan. Open Life Sci 11: 432-440. doi: 10.1515/biol-2016-0057.
[5] ASSIS, F.N.; ARRUDA, H.V.; PEREIRA, A.R. Aplicações de estatística à climatologia. Teoria e Prática. Pelotas: Ed. Universitária/UFPel. 1996. 161p.
[6] BACK, A. J. 2011. Time distribution of heavy rainfall events in Urussanga, Santa Catarina State, Brazil. Acta Scientiarum. Agronomy 33: 583-588. doi: 10.4025/actasciagron.v33i4.6664.
[7] BESKOW, S.; CALDEIRA, T. L.; MELLO C. R.; FARIA, L. C.; GUEDES, H. A. S. 2015. Multiparameter probability distributions for heavy rainfall modeling in extreme southern Brazil. Journal of Hydrology: Regional Studies 4: 123-133. doi: 10.1016/j.ejrh.2015.06.007.
[8] BONTA, J.V. 2004. Development and utility of Huff curves for disaggregating precipitation amounts. Appl. Eng. Agric. 20, 641–653. doi: 10.13031/2013.17467.
[9] CALDEIRA, T.L., BESKOW, S., MELLO, C.R., FARIA, L.C., SOUZA, M.R., GUEDES, H.A.S., 2015. Modelagem probabilística de eventos de precipitação extrema no Estado do Rio Grande do Sul. Rev. Bras. Eng. Agrícola e Ambiental. 19 (3), 197-203. doi: 10.1590/1807-1929/agriambi.v19n3p197-203.
[10] CANHOLI, A.P. Drenagem urbana e controle de enchentes. São Paulo: Oficina de Textos. 302 p, 2005.
[11] CARDOSO CO, BERTOL I, SOCCOL OJ, SAMPAIO CAP. 2014. Generation of Intensity Duration Frequency Curves and Intensity Temporal Variability Pattern of Intense Rainfall for Lages/SC. Braz. arch. biol. technol. 57(2): 274-283. doi: 10.1590/S1516-89132013005000014.
[12] CARVALHO DF, CRUZ ES, PINTO MF, SILVA LDB, GUERRA JGM. 2009. Características da chuva e perdas por erosão sob diferentes práticas de manejo do solo. Rev. bras. eng. agríc. ambient. 13(1): 3-9. doi:10.1590/S1415-43662009000100001
[13] CHENG L, AGHAKOUCHAK A. 2014. Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate. Scientific Reports 4: 7093. doi: 10.1038/srep07093.
[14] CRUCIANI, D.E.; MACHADO, R.E.; SENTELHAS, P.C. 2002. Modelos da distribuição temporal de chuvas intensas em Piracicaba, SP. Revista Brasileira de Engenharia Agrícola e Ambiental. 6(1): 76-82. doi: 10.1590/S1415-43662002000100014.
[15] DOLŠAK, D.; BEZAK, N.; ŠRAJ, M. 2016. Temporal characteristics of rainfall events under three climate types in Slovenia. Journal of Hydrology 541: 1395–1405. doi: 10.1016/j.jhydrol.2016.08.047.
[16] DOUKA, M.; KARACOSTAS, T. 2017. Statistical analyses of extreme rainfall events in Thessaloniki, Greece. Atmospheric Research. doi: 10.1016/j.atmosres.2017.08.025.
[17] FORESTIERI, A.; LO CONTI, F.; BLENKINSOP, S.; CANNAROZZO, M.; FOWLER, H.J.; NOTO, L. V. 2018. Regional frequency analysis of extreme rainfall in Sicily (Italy). Int. J. Climatol. doi:10.1002/joc.5400
[18] GAÁL, L.; MOLNAR P.; SZOLGAY, J. 2014. Selection of intense rainfall events based on intensity thresholds and lightning data in Switzerland. Hydrol. Earth Syst. Sci., 18, 1561–1573. doi: 10.5194/hess-18-1561-2014.
[19] GHASSABI, Z.; KAMALI, G. A.; MESHKATEE, A. H.; HAJAM, S.; JAVAHERI, N. 2016. Time distribution of heavy rainfall events in South West of Iran. Journal of Atmospheric and Solar-Terrestrial Physics 145: 53-60. doi: 10.1016/j.jastp.2016.03.006.
[20] HADDAD K. RAHMAN, A. 2011. Selection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in Australia. Stoch. Environ. Res. Risk Assess. 25: 415-428. doi: 10.1007/s00477-010-0412-1.
[21] HUFF FA. Time distribution of rainfall in heavy storms. 1967. Water Resource Research 3: 1007-&. doi: 10.1029/WR003i004p01007.
[22] KAUFMANN, V.; CASTRO, N.M.DOS R; PINHEIRO, A. 2012. Escoamentos superficiais e de drenagem em solo com diferentes manejos e intensidades de chuvas simuladas. Revista Brasileira de Recursos Hídricos, v.17, n.4.
[23] LI, H.; CUI, X.; ZHANG, D. L. 2017. A statistical analysis of hourly heavy rainfall events over the Beijing metropolitan region during the warm seasons of 2007-2014. Int. J. Climatol. 37: 4027-4042. doi: 10.1002/joc.4983.
[24] LI, Z.; BRISSETTE, F.; CHEN, J. 2014. Assessing the applicability of six precipitation probability distribution models on the Loess Plateau of China. Int. J. Climatol. 34: 462-471. doi: 10.1002/joc.3699.
[25] LUPIKASZA, E. 2010. Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006. Int. J. Climatol. 30: 991–1007. doi: 10.1002/joc.1950.
[26] MAMOON, A. A.; RAHMAN, A. 2017. Selection of the best fir probability distribution in rainfall frequency analysis for Qatar. Nat Hazards 86: 281-296. doi: 10.1007/s11069-016-2687-0.
[27] MANDAL, S.; CHOUDHURY, B. U. 2015. Estimation and prediction of maximum daily rainfall at Sagar Island using best fit probability models. Theor. Appl. Climatol. 121: 87-97. doi: 10.1007/s00704-014-1212-1.
[28] MARTÍNEZ-CASANOVAS, J. A.; RAMOS, M. C.; RIBES-DASI, M. 2002. Soil erosion caused by extreme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma, 105: 125-140. doi: 10.1016/S0016-7061(01)00096-9.
[29] MELLO, C.R., VIOLA, M.R., 2013. Mapeamento de chuvas intensas no estado de Minas Gerais. Revista Brasileira de Ciência do Solo. 37, 37-44.
[30] MELLO, M. H. A.; ARRUDA, H. V.; ORTOLANI, A. A. 1994. Probabilidade de ocorrência de totais pluviais máximos horários, em Campinas, São Paulo. Revista IG, São Paulo, v.15, n.1/2, p. 59-67.
[31] NIGUSSIE TA, ALTUNKAYNAK A. 2018. Impacts of climate change on the trends of extreme rainfall indices and values of maximum precipitation at Olimpiyat Station, Istanbul, Turkey. Theor Appl Climatol. 1-15. doi: 10.1007/s00704-018-2449-x.
[32] OLUMIDE, B. A.; SAIDU, M.; OLUWASESAN, A. 2013. Evaluation of Best Fit Probability Distribution Models for the Prediction of Rainfall and Runoff Volume (Case Study Tagwai Dam, Minna-Nigeria). Int J Eng Technol 3(2): 94-98.
[33] OÑATE-VALDIVIESO F, FRIES A, MENDOZA K, GONZALEZ-JARAMILLO V, PUCHA-COFREP F, ROLLENBECK R, BENDIX J. 2018. Temporal and spatial analysis of precipitation patterns in an Andean region of southern Ecuador using LAWR weather radar. Meteorol Atmos Phys. 130: 473-484. doi: 10.1007/s00703-017-0535-8.
[34] PINTO, F.R.L. Equações de intensidade-duração-frequência da precipitação para os Estados do Rio de Janeiro e Espírito Santo: Estimativa e especialização. Viçosa, MG: UFV, 1999. 70p. Dissertação Mestrado
[35] SÃO PAULO. Secretaria Municipal de Desenvolvimento Urbano. Manual de drenagem e manejo de águas pluviais: aspectos tecnológicos; diretrizes para projetos. São Paulo: SMDU. 2012, 130 p.
[36] REICHARDT, K. A água em sistemas agrícolas. São Paulo: Editora Mande, 1987. 188p.
[37] SENTELHAS, P.C.; CRUCIANI, D.C.; PEREIRA, A.S.; VILLA NOVA, N.A. 1998. Distribuição horária de chuvas intensas de curta duração: um subsídio ao dimensionamento de projetos de drenagem superficial. Revista Brasileira de Meteorologia. V. 13, n. 1, p. 45-52.
[38] SHARMA, M. A., SINGH, J. B. 2010. Use of probability Distribution in Rainfall Analysis. New York Science Journal 3: 40-49.
[39] SWAMINATHAN, M.S.; RENGALAKSHMI, R. 2016. Impact of extreme weather events in Indian agriculture: Enhancing the coping capacity of farm families. Mausam, 67: 1-4.
[40] SYAFRINA, A. H.; ZALINA, M. D.; JUNENG, L. 2015. Historical trend of hourly extreme rainfall in Peninsular Malaysia. Theor Appl Climatol. 120: 259-285. doi: 10.1007/s00704-014-1145-8.
[41] TERRANOVA, O. G.; IAQUINTA, P. 2011. Temporal properties of rainfall events in Calabria (southern Italy). Nat. Hazards Earth Syst. Sci. 11: 751-757. doi: 10.5194/nhess-11-751-2011.
[42] VALLEBONA C, PELLEGRINO E, FRUMENTO P, BONARI E. 2015. Temporal trends in extreme rainfall intensity and erosivity in the Mediterranean region: a case study in southern Tuscany, Italy. Climatic Change 128: 139-151. doi: 10.1007/s10584-014-1287-9.
[43] VICENTE AK, NUNES LH. 2004. Extreme precipitation events in Campinas, Brazil. Terrae. 1(1): 60-62.
[44] VÖRÖSMARTY CJ, DE GUENN LB, WOLLHEIM WM, PELLERIN B, BJERKLIE D, CARDOSO M, D’ALMEIDA C, GREEN P, COLON L. 2013. Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America. Phil. Trans. R. Soc. A, 371: 20120408. doi: 10.1098/rsta.2012.0408.
[45] ZIN, W. Z. W.; JEMAIN, A. A.; IBRAHIM, K. 2009. The best fitting distribution of anual maximum rainfall in Peninsular Malaysia based on methods of L-moment and LQ-moment. Theor Appl Climatol 96: 337-344. doi: 10.1007/s00704-008-0044-2.