Statistics

    Map

Twitter

Probiotics in Aquaculture Review: Current Status and Application in Tambaqui Cultivation (Colossoma macropomum)
( Vol-5,Issue-5,May 2018 )
Author(s):

Valéria Maria de Melo Lima, Aloisio Freitas Chagas Júnior, Gessiel Newton Scheidt, Emerson Carlos Soares e Silva, Augustus Caeser Franke Portella

Keywords:

probiotic; immunity; stress; tambaqui.

Abstract:

The development of aquaculture guarantees the supply of animal protein of great nutritional value, contributing to food security. Currently one of the main problems faced is the occurrence of diseases, responsible for a worldwide economic loss, equivalent to US $ 9 billion per year. Aiming to increase resistance to diseases, increasing growth rates and food efficiency in intensive crops, some strategies have been developed, one of them is the use of probiotic bacteria. These, when in contact with the digestive tract of the host generates a series of benefits, among them, the modulation of the immune system, developing defense mechanisms and increasing resistance to stress. However, there are few documented reports on the efficiency of probiotics in native species, such as tambaqui (Colossoma macropomum). This species shows some resistance to stress, through physiological mechanisms of adaptation, such as lip expansion when subjected to hypoxia situations, which added to the positive effects of using probiotics would represent an increase in its resistance. The purpose of this work is to review the literature on the use of probiotics in aquaculture in order to provide a comprehensive synthesis of the current knowledge about its use in aquaculture, with emphasis on the intensive cultivation of tambaqui.

ijaers doi crossref DOI:

10.22161/ijaers.5.5.4

Paper Statistics:
  • Total View : 47
  • Downloads : 19
  • Page No: 026-034
Cite this Article:
MLA
Valéria Maria de Melo Lima et al ."Probiotics in Aquaculture Review: Current Status and Application in Tambaqui Cultivation (Colossoma macropomum)". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol 5, no. 5, 2018, pp.026-034 AI Publications, doi:10.22161/ijaers.5.5.4
APA
Valéria Maria de Melo Lima, Aloisio Freitas Chagas Júnior, Gessiel Newton Scheidt, Emerson Carlos Soares e Silva, Augustus Caeser Franke Portella(2018).Probiotics in Aquaculture Review: Current Status and Application in Tambaqui Cultivation (Colossoma macropomum). International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),5(5), 026-034. http://dx.doi.org/10.22161/ijaers.5.5.4
Chicago
Valéria Maria de Melo Lima, Aloisio Freitas Chagas Júnior, Gessiel Newton Scheidt, Emerson Carlos Soares e Silva, Augustus Caeser Franke Portella. 2018,"Probiotics in Aquaculture Review: Current Status and Application in Tambaqui Cultivation (Colossoma macropomum)". International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(5):026-034. Doi: 10.22161/ijaers.5.5.4
Harvard
Valéria Maria de Melo Lima, Aloisio Freitas Chagas Júnior, Gessiel Newton Scheidt, Emerson Carlos Soares e Silva, Augustus Caeser Franke Portella. 2018,Probiotics in Aquaculture Review: Current Status and Application in Tambaqui Cultivation (Colossoma macropomum), International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)).5(5), pp:026-034
IEEE
Valéria Maria de Melo Lima, Aloisio Freitas Chagas Júnior, Gessiel Newton Scheidt, Emerson Carlos Soares e Silva, Augustus Caeser Franke Portella."Probiotics in Aquaculture Review: Current Status and Application in Tambaqui Cultivation (Colossoma macropomum)", International Journal of Advanced Engineering Research and Science(ISSN : 2349-6495(P) | 2456-1908(O)),vol.5,no. 5, pp.026-034,2018.
Bibtex
@article {valériamariademelolima2018probiotics,
title={Probiotics in Aquaculture Review: Current Status and Application in Tambaqui Cultivation (Colossoma macropomum)},
author={Valéria Maria de Melo Lima, Aloisio Freitas Chagas Júnior, Gessiel Newton Scheidt, Emerson Carlos Soares e Silva, Augustus Caeser Franke Portella},
journal={International Journal of Advanced Engineering Research and Science},
volume={5},
year= {2018},
}
Share:
References:

[1] Ali A (2000). Probiotics in fish farming. Evaluation of a bacterial mixture. PhD thesis. Swedish University of Agricultural Sciences, Umea. Sweden.
[2] Aly SM, AHMED YA, GHAREEB A A, MOHAMED MF (2008). Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the imune response and resistance of Tilapia nilótica (Oreochromis niloticus) to challenge infections. Fish & Shellfish Immunology. 25:128-136.
[3] Araujo CSO, Tavares-dias M, Gomes ALS, Andrade SMS, Lemos JRG, Oliveira AT, Cruz VR, Affonso EG (2009). Infecções parasitárias e parâmetros sanguíneos em Arapaima gigas (Arapaimidae) cultivados no estado do Amazonas, Brasil. In: Tavares-Dias, M. (Org.). Manejo e Sanidade de Peixes em Cultivo. 1 ed. Macapá, AP: Embrapa Amapá.1:389-424.
[4] Azevedo RV, Filho JCF, Pereira SL, Cardoso LD, Júnior MVV, Andrade DR (2016). Suplementação com prebiótico, probiótico e simbiótico para juvenis de tambaqui a duas densidades de estocagem. Pesq. agropec. bras., Brasília. 51:9-16.
[5] Balcazar JL, Blas I, Zarzuela-ruiz I, Cunningham D, Vendrell D, Múzquiz JL (2007). The role of probiotics in aquaculture (Review). Vet Microbiol.114:173–186.
[6] Balcázar JL, Vendrell D, Blas I, Ruiz-zarzuela I, Gironés O, Múzquiz J L (2007). In vitro competitive adhesion and production of antagonistic compounds by lactic acid bacteria against fish pathogens (Short communication). Veterinary Microbiology.122:373–380.
[7] Boijink CL, Miranda WSC, Chagas EC (2015). Anthelmintic activity of eugenol in tambaquis with monogeneam gil infection. Aquaculture.438:138-140.
[8] Cahill MM (1990) Bacterial flora of fishes: a review. Microb Ecol.19:21–41.
[9] CarnevalI O, Devivo L, Sulpizio R, Gioacchini G, Olivotto I, Silvi S et al (2006). Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture. 258:430–438.
[10] Castex M, Lemaire P, Wabete N, Chim L (2009). Efeito do probiótico na dieta Pediococcus acidilactici em defesas antioxidantes e estresse oxidativo de camarão, stylirostris Litopenaeus. Aquicultura.194:306-313.
[11] Das S, Ward LR, Burke C (2008). Prospects of using marine actinobacteria as probiotics in aquaculture. Appl Microbiol Biotechnol. 81:419–429.
[12] Dawood MAO, Koshio S (2016). Recent advances in the role of probiotics and prebiotics in carpa quaculture: A review. Aquaculture. 454:243–251.
[13] Díaz-de-alba M, Raya A C, Granado-castro M D, Ramírez M O, Mai BE et al (2017). Biomarker responses of Cu-induced toxicity in European seabass Dicentrarchus labrax:Assessing oxidative stress and histopathological alterations. Marine Pollution Bulletin. 124:336–348.
[14] Didinen BI, Onuk EE, Metin S, Cayli O (2018). Identification and characterization of lactic acid bactéria isolated from rainbow trout (Oncorhynchus mykiss, Walbaum 1792), with inhibitory activity against Vagococcus salmoninarum and Lactococcus garvieae. Aquaculture Nutrition. 24:400–407.
[15] Dotta G, Mouriño,JLP, Jatobá A, Morán REB, Pilate C, Martins ML (2011). Acuty inflammatory response in Nile tilapia fed probiotic Lactobacillus plantarum in the diet. Acta Scientiarum. Biological Sciences. 33:239-246.
[16] Dias MT, Ishikawa MM, Martins ML, Satake F, Hisano H, Pádua SB, Jerônimo GT, Santana AR (2009). Hematologia: ferramenta para o monitoramento do estado de saúde de peixes em cultivo. In: Tópicos especiais em saúde e criação animal. [SARAN-NETO et al.]. Ed. 1ª. São Carlos: Pedro & João editores, . ISBN 9788599803783.
[17] FAO - Organización de las Naciones Unidas para la Alimentación y la Agricultura 2016. El estado mundial de la pesca y la acuicultura. Disponível em: Acesso em: 28 mar. 2018.
[18] FAO. Food and Agriculture Organization of the United Nations: The State of World Fisheries and Aquaculture, Rome; 2011. Disponível em: Acesso em: 12 mar. 2018.
[19] FAO (2018). Globefish highlights a quarterly update on world seafood markets. Disponível em: Acesso em: 18 abr. 2018
[20] Ferreira CM (2014). Uso de probiótico durante o transporte de juvenis de tambaqui (Colossoma macropomum) em sistema fechado. Dissertação (Mestrado em Ciência Animal) – Faculdade de Agronomia e Medicina Veterinária e Zootecnia, Universidade Federal do Mato Grosso, Cuiabá.
[21] Fuller R (1989). Probiotics in manandanimals. Journal of applied bacteriology, New York. 66:356-378
[22] Gabbay MI (2012). Avaliação da suplementação alimentar com bacteria probiótica no crescimento e sanidade de Arapaima gigas em sistema de recirculação de agua. Dissertação (Mestrado em Ciência Animal) – Núcleo de Ciências Agrárias e Desenvolvimento Rural, Universidade Federal do Pará, Belém.
[23] Ganguly S, Paul I, Mukhopadhayay SK (2010). Application and Effectiveness of Immunostimulants, Probiotics, and Prebiotics in Aquaculture: A Review. The Israeli Journal of Aquaculture – Bamidgeh. 62:130-138.
[24] Gildberg A, Mikkelsen H, Sandaker E, Ringo E (1997). Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua). Hydrobiologia. 352:279–285.
[25] Haroun ER, Goda AS, Kabir AM (2006). Chowdhurry, M. A. Effect of dietary probiotic Biogen_ supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus. Aquacult Research. 37:1473–1480.
[26] Hegazi MM, Attia ZI, Ashour O A (2010). Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure. Aquatic Toxicology. 99:118–125.
[27] Ibrahem MD (2015). Evolution of probiotics in aquatic world: Potential effects, the current status in Egypt and recente prospectives. Journal of Advanced Research. 6:765–791.
[28] Jesus GFA, Pereira SA, Pereira G V, Silva BC, Martins ML, Mouriño JLP (2016). Probióticos na Piscicultura. Revista Aquaculture Brasil, ed. 2, Tubarão, Santa Catarina.
[29] Inoue LAKA, Boijink CL, Ribeiro PT, Silva AMD, Affonso EG (2011). Avaliação de respostas metabólicas do tambaqui exposto ao eugenol em banhos anestésicos. Acta Amazônica. 41: 327 – 332.
[30] Iribarren D, Dagá P, Moreira MT, Feijoo G (2012). Potential environmental effects of probiotics used in aquaculture. Aquacult Int. 20:779–789.
[31] Jatobá A, Vieira FN, Neto CB, Silva CB, Mouriño JLP, Jerônimo GT et al. (2008). Utilização de bactérias ácido-lácticas isoladas do trato intestinal de tilapia‑do‑nilo como probiótico.Pesq. agropec. bras., Brasília. 43:1201-1207.
[32] Korkea-aho TL, Papadopoulou A, Heikkinen J, Von wright A, Adams A, AUSTIN B (2012). THOMPSON, K. D. Pseudomonas M162 confers protection against rainbow trout fry syndrome. J. Appl. Microbiol.113:24–35.
[33] Kotzent S (2017). Bactérias com potencial probiótico do intestino de tambaqui (Colossoma macropomum). Dissertação (Mestrado em Microbiologia Agropecuária) – Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal.
[34] Lacerda CL, Rocha EM, Belo MAA (2017). Controle de doenças bacterianas em tambaqui (Colossoma macropomum). Boletim técnico da produção animal (Programa de Mestrado Profissional em Produção Animal) – Universidade Brasil (UNICASTELO), Campus Descalvado.
[35] Lazado CC (2014). CAIPANG, C. M. A. Atlantic cod in the dynamic probiotics research in aquaculture. Aquaculture. 424–425:53–62.
[36] Lazado CC, Caipang CMA, Brinchmann MF, Kiron V (2011). In vitro adherence of two candidate probiotics from Atlantic cod and their interference with the adhesion of two pathogenic bacteria. Vet. Microbiol.148:252–259.
[37] Leblanc JG, Laino JE, Del Valle MJ, Vannini V, Van Sinderen D, Taranto MP. et al (2011) B-group vitamin production by lactic acid bacteria–current knowledge and potential applications. J Appl Microbiol. 111:1297–1309.
[38] Linh NTH, Sakai K, Taoka Y (2018). Screening of lactic acid bacteria isolated from fermented food as potential probiotics for aquacultured carp and amberjack. Fisheries Science. 84:101–111.
[39] Lopera-Barreto MN, Ribeiro RP, Povh JA, Mendes LDV, Poveda-Parra AR (2011). Produção de organismos aquáticos: Uma visão geral do Brasil e no Mundo. Editora Agro livros, Guaíba, RS. 320 p., 2011.
[40] Luis-Vilaseñior IE, Voltolina D, Gomez-Gil B, Ascencio F, Campa-Córdova AL et al (2015). Probiotic modulation of the gut bacterial community of juvenile Litopenaeus vannamei challenged with Vibrio parahaemolyticus CAIM 170. Lat. Am. J. Aquat. Res., 43:766-775.
[41] Mahdhi A, Kamoun F, Messina C, Santulli A, Bakhrouf A (2012) Probiotic properties of Brevibacillus brevis and its influence on sea bass (Dicentrarchus labrax) larval rearing. Afr. J. Microbiol. Res.,6:6487–649.
[42] Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM (2010). Bogwald, J. et al. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302:1–18.
[43] Moubareck C, Gavini F, Vaugien L, Butel MJ, Doucer-Popularie F (2005). Antimicrobial susceptibility of Bifidobacteria. J Antimicrob Chemo. 55:38–44.
[44] Mohapatra S, Chakraborty T, Kumar V, DeBoeck V, Mohanta KN (2012). Aquaculture and stress management: a review of probiotic intervention. Journal of Animal Physiology and Animal Nutrition. 97:405-430.
[45] Nayak, SK (2010). Probiotics and immunity: A fish perspective (Review). Fish & Shellfish Immunology. 29:2-14.
[46] Newaj-Fyzul A, Al-Harbi AH, Austin B (2014) Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture. 431:1–11.
[47] Paixão AEM, Santos JC, Pinto MS, Pereira DS P, Ramos CECO, Cerqueira RB et al (2017). Effect of commercial probiotics (Bacillus subtilis and Saccharomyces cerevisiae) on growth performance, body composition, hematology parameters, and disease resistance against Streptococcus agalactiae in tambaqui (Colossoma macropomum). Aquacult Int., 25:2035–2045.
[48] Peixe BR. In: Anuário da piscicultura 2018. Disponível em: Acesso em: 12 mar. 2018.
[49] Pereira DSP, Guerra-Santos B, Medeiros SDC, Albinate RCB, Ayres MCC (2015). Comparação de metodologias utilizadas na análise dos parâmetros sanguíneos e da proteína total de tilápia do Nilo (Oreochromis niloticus). Rev. Bras. Saúde Prod. Anim. Salvador. 16:893-904.
[50] Poffo F, Silva MAC (2011) Caracterização taxonômica e fisiológica de bactérias ácido-láticas isoladas de pescado marinho. Cienc. Tecnol. Aliment., Campinas. 31:303-307.
[51] Qi Z, Zhang X, Boon N, Bossier P (2009). Probiotics in aquaculture of China — Current state, problems and prospect. Aquaculture. 290:15–21.
[52] Tang L, Huang K, Xie J, Yu D, Sun L, Bi Y, (2017). 1-Deoxynojirimycin from Bacillus subtilis improves antioxidant and antibacterial activities of juvenile Yoshitomi tilapia. Electronic Journal of Biotechnology. 30:39–47.
[53] Teh, SJ, Adams SM, Hinton DE (1997). Histopathological biomarkers in feral freshwater fish populations exposed to different types of contaminant stress. Aquatic Toxicology. 37: 51-70.
[54] Torres DE (2014). Avaliação do efeito de microrganismos probióticos sobre o desempenho zootécnico, hematológico e tolerância ao estresse da truta arco-íris (Onchorhynchus mykiss). Dissertação (Mestrado em Biotecnologia Industrial) – Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena.
[55] Trevisan R (2000) Marcadores de estresse oxidativo e outros parâmetros biológicos em peixes e bivalves como ferramentas de monitoramento ambiental: análise de dois ecossistemas catarinenses. Florianópolis: UFSC.
[56] Wang Y, Li J, Lin J (2008). Probiotics in aquaculture: Challenges and outlook. Aquaculture. 281:1–4.
[57] Yu L, Zhai Q, Zhu J, Zhang C, Li T, Liu X, Zhao J, Zhang H, Tian F, Chen F (2014). Dietary Lactobacillus plantarum supplementation enhances growth. performance and alleviates aluminum toxicity in tilapia. Ecotoxicology and Environmental Safety. 143:07–314.
[58] Yuji Sado R, Bicudo AJA, Cyrino JEP (2014). Hematology of juvenile pacu, Piaractus mesopotamicus (Holmberg, 1887) fed graded levels of mannan oligosaccharides (MOS). Lat. Am. J. Aquat. Res., 42:30-39.
[59] Val AL (1986). Hemoglobinas de Colossoma macropomum, Cuvier 1818 (Characoidei, pisces): aspectos adaptativos. Nível Doutorado, Instituto Nacional de Pesquisas da Amazônia/Conselho Nacional de Desenvolvimento Científico e tecnológico /Fundação Universidade do Amazonas, Manaus, pp 112.
[60] Val AL, Almeida-Val VMF (1995). Fishes of the Amazon and their environments.Springer Verlag, Heidelberg, pp 224.
[61] Zhai Q, Wang H, Tian F, Zhao J, Zhang H, Chen W (2017). Dietary Lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquaculture Research.48:5094–5103.
[62] Zelikoff JT (1998). Biomarkers of immunotoxicity in fish e other non-mammalian sentinel species predictive value for mammals. Toxicology. Limerick 129: 63-71.